Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Wnt signalling induces maturation of Paneth cells in intestinal crypts

Abstract

Wnt signalling, which is transduced through β-catenin/TCF4, maintains the undifferentiated state of intestinal crypt progenitor cells1,2. Mutational activation of the pathway initiates the adenomacarcinoma sequence3,4. Whereas all other differentiated epithelial cells migrate from the crypt onto the villus, Paneth cells home towards the source of Wnt signals — that is, the crypt bottom. Here, we show that expression of a Paneth gene programme is critically dependent on TCF4 in embryonic intestine. Moreover, conditional deletion of the Wnt receptor Frizzled-5 abrogates expression of these genes in Paneth cells in the adult intestine. Conversely, adenomas in Apc-mutant mice and colorectal cancers in humans inappropriately express these Paneth-cell genes. These observations imply that Wnt signals in the crypt can separately drive a stem-cell/progenitor gene programme and a Paneth-cell maturation programme. In intestinal cancer, both gene programmes are activated simultaneously.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryptdins are target genes of the transcription factor 4 (Tcf4)–β-catenin signalling pathway.
Figure 2: Strong nuclear expression of β-catenin and transcription factor 4 (Tcf4) in Paneth cells and the upregulation of Paneth-cell-specific genes in APCMin tumours.
Figure 3: Transcription factor (Tcf)/β-catenin activation of the cryptdin-1, cryptdin-6 and defensin-5 promoter through a highly conserved TCF binding site.
Figure 4: Paneth cells in the small intestine of Fz5LoxP/LoxP-K19Cre mice.

Similar content being viewed by others

References

  1. Bienz, M. & Clevers, H. Linking colorectal cancer to Wnt signaling. Cell 103, 311–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Korinek, V. et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genet. 19, 379–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin–Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Behrens, J. et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Behrens, J. et al. Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β. Science 280, 596–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S. & Kikuchi, A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin. EMBO J. 17, 1371–1384 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Batlle, E. et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251–263 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Ayabe, T., Satchell, D. P., Wilson, C. L., Parks, W. C., Selsted, M. E. & Ouellette, A. J. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1, 113–118 (2000).

    Article  CAS  Google Scholar 

  12. Liu, C., Xu, Z., Gupta, D. & Dziarski, R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J. Biol. Chem. 276, 34686–34694 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Krause, R. et al. Molecular cloning and characterization of murine Mpgc60, a gene predominantly expressed in the intestinal tract. Differentiation 63, 285–294 (1998).

    CAS  PubMed  Google Scholar 

  14. Crawford, H. C. et al. The metalloproteinase matrilysin is a target of β-catenin transactivation in intestinal tumors. Oncogene 18, 2883–2891 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Porter, E. M., Bevins, C. L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156–170 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ayabe, T. et al. Activation of Paneth cell α-defensins in mouse small intestine. J. Biol. Chem. 277, 5219–5228 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. van Beest, M. et al. Sequence-specific high mobility group box factors recognize 10–12-base pair minor groove motifs. J. Biol. Chem. 275, 27266–27273 (2000).

    CAS  PubMed  Google Scholar 

  19. Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature 422, 522–526 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Hatzis, P. & Talianidis, I. Regulatory mechanisms controlling human hepatocyte nuclear factor 4α gene expression. Mol. Cell. Biol. 21, 7320–7330 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ishikawa, T. et al. Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development 128, 25–33 (2001).

    CAS  PubMed  Google Scholar 

  22. Harada, N. et al. Intestinal polyposis in mice with a dominant stable mutation of the β-catenin gene. EMBO J. 18, 5931–5942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moller, P., Walczak, H., Reidl, S., Strater, J. & Krammer, P. H. Paneth cells express high levels of CD95 ligand transcripts: a unique property among gastrointestinal epithelia. Am. J. Pathol. 149, 9–13 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bancroft, J. D. & Stevens, A. Theory and Practice of Histological Techniques 4th edn, 304, 385–386 (Churchill Livingstone, New York, 1996).

    Google Scholar 

  25. Peifer, M. & Polakis, P. Wnt signaling in oncogenesis and embryogenesis — a look outside the nucleus. Science 287, 1606–1609 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Huelsken, J. & Birchmeier, W. New aspects of Wnt signaling pathways in higher vertebrates. Curr. Opin. Genet. Dev. 11, 547–553 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Marshman, E., Booth, C. & Potten, C. S. The intestinal epithelial stem cell. Bioessays. 1, 91–98 (2002).

    Article  Google Scholar 

  28. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Selsted, M. E., Miller, S. I., Henschen, A. H. & Ouellette, A. J. Enteric defensins: antibiotic peptide components of intestinal host defense. J. Cell Biol. 118, 929–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Moorman, A. F., Houweling, A. C., de Boer, P. A. & Christoffels, V. M. Sensitive nonradioactive detection of mRNA in tissue sections: novel application of the whole-mount in situ hybridization protocol. J. Histochem. Cytochem. 49, 1–8 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.J. Ouellette, H. Crawford, M. Chamorro and C. Wilson for sharing reagents; and N. Barker, M. van de Wetering and E. Batlle for critical reading of this manuscript. H.C. is supported by grants from the Koningin Wilhelmina Fonds, ZON-MW/Spinoza and the Louis Jeantet Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Clevers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1, S2 and S3; supplementary table S1 (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Es, J., Jay, P., Gregorieff, A. et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7, 381–386 (2005). https://doi.org/10.1038/ncb1240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing