Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin

Abstract

The insulin/IGF-1 (insulin-like growth factor 1) signalling pathway promotes adipocyte differentiation via complex signalling networks. Here, using microarray analysis of brown preadipocytes that are derived from wild-type and insulin receptor substrate (Irs) knockout animals that exhibit progressively impaired differentiation, we define 374 genes/expressed-sequence tags whose expression in preadipocytes correlates with the ultimate ability of the cells to differentiate. Many of these genes, including preadipocyte factor-1 (Pref-1) and multiple members of the Wnt signalling pathway, are related to early adipogenic events. Necdin is also markedly increased in Irs knockout cells that cannot differentiate, and knockdown of necdin restores brown adipogenesis with downregulation of Pref-1 and Wnt10a expression. Insulin receptor substrate proteins regulate a necdin–E2F4 interaction that represses peroxisome-proliferator-activated receptor γ (PPARγ) transcription via a cyclic AMP response element binding protein (CREB)-dependent pathway. Together these define a key signalling network that is involved in brown preadipocyte determination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Considering phenotypes as a continuum.
Figure 2: Q-RT–PCR analyses confirm changes in gene expression in vitro and in vivo.
Figure 3: Role of necdin and E2Fs in brown adipogenesis.
Figure 4: Necdin RNAi restores differentiation, mitotic clonal expansion, and mRNA and protein expression.
Figure 5: Regulation of gene expression by CREB.
Figure 6: Proposed model of regulation of brown adipogenesis by the insulin/IGF-1/IRS pathway.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Rangwala, S. M. & Lazar, M. A. Transcriptional control of adipogenesis. Annu. Rev. Nutr. 20, 535–559 (2000).

    Article  CAS  Google Scholar 

  2. Koutnikova, H. & Auwerx, J. Regulation of adipocyte differentiation. Ann. Med. 33, 556–561 (2001).

    Article  CAS  Google Scholar 

  3. MacDougald, O. A. & Mandrup, S. Adipogenesis: forces that tip the scales. Trends Endocrinol. Metab. 13, 5–11 (2002).

    Article  CAS  Google Scholar 

  4. Gregoire, F. M. Adipocyte differentiation: from fibroblast to endocrine cell. Exp. Biol. Med. (Maywood) 226, 997–1002 (2001).

    Article  CAS  Google Scholar 

  5. Cowherd, R. M., Lyle, R. E. & McGehee, R. E. J. Molecular regulation of adipocyte differentiation. PMID 10, 3–10 (1999).

    CAS  Google Scholar 

  6. Rosen, E. D., Walkey, C. J., Puigserver, P. & Spiegelman, B. M. Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293–1307 (2000).

    CAS  PubMed  Google Scholar 

  7. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    Article  CAS  Google Scholar 

  8. Gregoire, F. M., Smas, C. M. & Sul, H. S. Understanding adipocyte differentiation. Physiol. Rev. 78, 783–809 (1998).

    Article  CAS  Google Scholar 

  9. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).

    Article  CAS  Google Scholar 

  10. Smas, C. M. & Sul, H. S. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 73, 725–734 (1993).

    Article  CAS  Google Scholar 

  11. Tong, Q. et al. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290, 134–138 (2000).

    Article  CAS  Google Scholar 

  12. Chen, P. L., Riley, D. J., Chen, Y. & Lee, W. H. Retinoblastoma protein positively regulates terminal adipocyte differentiation through direct interaction with C/EBPs. Genes Dev. 10, 2794–2804 (1996).

    Article  CAS  Google Scholar 

  13. Tseng, Y. H., Kriauciunas, K. M., Kokkotou, E. & Kahn, C. R. Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol. Cell. Biol. 24, 1918–1929 (2004).

    Article  CAS  Google Scholar 

  14. Bartholomew, D. J. A test of homogeneity for ordered alternatives. Biometrika 46, 36–48 (1959).

    Article  Google Scholar 

  15. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  Google Scholar 

  16. Spiegelman, B. M. & Farmer, S. R. Decreases in tubulin and actin gene expression prior to morphological differentiation of 3T3 adipocytes. Cell 29, 53–60 (1982).

    Article  CAS  Google Scholar 

  17. Weiner, F. R., Shah, A., Smith, P. J., Rubin, C. S. & Zern, M. A. Regulation of collagen gene expression in 3T3-L1 cells. Effects of adipocyte differentiation and tumor necrosis factor alpha. Biochemistry 28, 4094–4099 (1989).

    Article  CAS  Google Scholar 

  18. Yi, T., Choi, H. M., Park, R. W., Sohn, K. Y. & Kim, I. S. Transcriptional repression of type I procollagen genes during adipocyte differentiation. Exp. Mol. Med. 33, 269–275 (2001).

    Article  CAS  Google Scholar 

  19. Vu, T. H. & Werb, Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 14, 2123–2133 (2000).

    Article  CAS  Google Scholar 

  20. Chavey, C. et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278, 11888–11896 (2003).

    Article  CAS  Google Scholar 

  21. Maquoi, E., Munaut, C., Colige, A., Collen, D. & Lijnen, H. R. Modulation of adipose tissue expression of murine matrix metalloproteinases and their tissue inhibitors with obesity. Diabetes 51, 1093–1101 (2002).

    Article  CAS  Google Scholar 

  22. Schiller, P. C., D'Ippolito, G., Brambilla, R., Roos, B. A. & Howard, G. A. Inhibition of gap-junctional communication induces the trans-differentiation of osteoblasts to an adipocytic phenotype in vitro. J. Biol. Chem. 276, 14133–14138 (2001).

    Article  CAS  Google Scholar 

  23. Kang, S. et al. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1α. Mol. Cell. Biol. 25, 1272–1282 (2005).

    Article  CAS  Google Scholar 

  24. Kawano, Y. & Kypta, R. Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116, 2627–2634 (2003).

    Article  CAS  Google Scholar 

  25. Escalante-Alcalde, D. et al. The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development 130, 4623–4637 (2003).

    Article  CAS  Google Scholar 

  26. Mata, J., Curado, S., Ephrussi, A. & Rorth, P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 101, 511–522 (2000).

    Article  CAS  Google Scholar 

  27. Du, K., Herzig, S., Kulkarni, R. N. & Montminy, M. TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577 (2003).

    Article  CAS  Google Scholar 

  28. Fasshauer, M. et al. Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol. Cell. Biol. 21, 319–329 (2001).

    Article  CAS  Google Scholar 

  29. Araki, E. et al. Alternative pathway of insulin signaling in mice with targeted disruption of the IRS-1 gene. Nature 372, 186–190 (1994).

    Article  CAS  Google Scholar 

  30. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).

    Article  CAS  Google Scholar 

  31. Laustsen, P. G. et al. Lipoatrophic diabetes in Irs1−/−/Irs3−/− double knockout mice. Genes Dev. 16, 3213–3222 (2002).

    Article  CAS  Google Scholar 

  32. Goldstone, A. P. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol. Metab. 15, 12–20 (2004).

    Article  CAS  Google Scholar 

  33. Taniura, H., Taniguchi, N., Hara, M. & Yoshikawa, K. Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J. Biol. Chem. 273, 720–728 (1998).

    Article  CAS  Google Scholar 

  34. Kobayashi, M., Taniura, H. & Yoshikawa, K. Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J. Biol. Chem. 277, 42128–42135 (2002).

    Article  CAS  Google Scholar 

  35. Fajas, L. et al. E2Fs regulate adipocyte differentiation. Dev. Cell 3, 39–49 (2002).

    Article  CAS  Google Scholar 

  36. Tseng, Y. H., Ueki, K., Kriauciunas, K. M. & Kahn, C. R. Differential roles of insulin receptor substrates in the anti-apoptotic function of insulin-like growth factor-1 and insulin. J. Biol. Chem. 277, 31601–31611 (2002).

    Article  CAS  Google Scholar 

  37. Reusch, J. E., Colton, L. A. & Klemm, D. J. CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell. Biol. 20, 1008–1020 (2000).

    Article  CAS  Google Scholar 

  38. Klemm, D. J. et al. Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. J. Biol. Chem. 276, 28430–28435 (2001).

    Article  CAS  Google Scholar 

  39. Landsberg, R. L. et al. The role of E2F4 in adipogenesis is independent of its cell cycle regulatory activity. Proc. Natl Acad. Sci. USA 100, 2456–2461 (2003).

    Article  CAS  Google Scholar 

  40. Martelli, F. & Livingston, D. M. Regulation of endogenous E2F1 stability by the retinoblastoma family proteins. Proc. Natl Acad. Sci. USA 96, 2858–2863 (1999).

    Article  CAS  Google Scholar 

  41. Yang, T. et al. A mouse model for Prader-Willi syndrome imprinting-centre mutations. Nature Genet. 19, 25–31 (1998).

    Article  CAS  Google Scholar 

  42. Boeuf, S. et al. Differential gene expression in white and brown preadipocytes. Physiol. Genomics 7, 15–25 (2001).

    Article  CAS  Google Scholar 

  43. Brunelli, S. et al. Msx2 and necdin combined activities are required for smooth muscle differentiation in mesoangioblast stem cells. Circ. Res. 94, 1571–1578 (2004).

    Article  CAS  Google Scholar 

  44. Kuwajima, T., Taniura, H., Nishimura, I. & Yoshikawa, K. Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells. J. Biol. Chem. 279, 40484–40493 (2004).

    Article  CAS  Google Scholar 

  45. Jansson, P. A. et al. A novel cellular marker of insulin resistance and early atherosclerosis in humans is related to impaired fat cell differentiation and low adiponectin. FASEB J. 17, 1434–1440 (2003).

    Article  CAS  Google Scholar 

  46. Asahara, H. et al. Chromatin-dependent cooperativity between constitutive and inducible activation domains in CREB. Mol. Cell. Biol. 21, 7892–7900 (2001).

    Article  CAS  Google Scholar 

  47. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  48. Pan, W., Lin, J. & Le, C. T. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 3, research0022 (2002).

  49. Ideker, T., Thorsson, V., Siegel, A. F. & Hood, L. E. Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J. Comput. Biol. 7, 805–817 (2000).

    Article  CAS  Google Scholar 

  50. Levene, H. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling (eds Olkin, I. et al.) 278–292 (Stanford Univ. Press, Stanford, CA, 1960).

    Google Scholar 

Download references

Acknowledgements

We acknowledge A. Norris for constructive comments on the manuscript. We thank M. Montminy (Salk Institute for Biological Studies, La Jolla, CA) and L. Fajas (Metabolism and Cancer Laboratory, INSERM, France) for providing the plasmids used in this study. We acknowledge J. Klein and M. Fasshauer for preparation of cell lines, P. Laustsen, S. Crunkhorn, B. Emanuelli, S. Gesta, D. Espinoza, P. Lin and H. Gami for technical assistance, and J. Marr for excellent secretarial assistance. This work was supported in part by the National Institutes of Health grants DK33201, DK60837 (to C.R.K.), DK101183 (to Y.-H.T.), DK63696 (to A.J.B.) and DK07260 (to A.M.C.) as well as grants from the Lawson Wilkins Pediatric Endocrine Society and the Harvard/MIT Health Sciences and Technology (to A.J.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ronald Kahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1, S2, S3 (PDF 301 kb)

Supplementary information

Supplementary table 1 (XLS 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, YH., Butte, A., Kokkotou, E. et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol 7, 601–611 (2005). https://doi.org/10.1038/ncb1259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1259

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing