Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit

Abstract

Here we identify a new regulator of endocytosis called RME-6. RME-6 is evolutionarily conserved among metazoans and contains Ras-GAP (GTPase-activating protein)-like and Vps9 domains. Consistent with the known catalytic function of Vps9 domains in Rab5 GDP/GTP exchange, we found that RME-6 binds specifically to Caenorhabditis elegans RAB-5 in the GDP-bound conformation, and rme-6 mutants have phenotypes that indicate low RAB-5 activity. However, unlike other Rab5-associated proteins, a rescuing green fluorescent protein (GFP)–RME-6 fusion protein primarily localizes to clathrin-coated pits, physically interacts with α-adaptin, a clathrin adaptor protein, and requires clathrin to achieve its cortical localization. In rme-6 mutants, transport from the plasma membrane to endosomes is defective, and small 110-nm endocytic vesicles accumulate just below the plasma membrane. These results suggest a mechanism for the activation of Rab5 in clathrin-coated pits or clathrin-coated vesicles that is essential for the delivery of endocytic cargo to early endosomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: rme-6 mutant phenotypes and the predicted RME-6 protein.
Figure 2: RME-6 physically interacts with RAB-5S33N.
Figure 3: rme-6 and rabx-5 function in membrane recruitment of GFP–RAB-5, and in animal viability.
Figure 4: An early stage of endocytosis slows down in rme-6 mutant coelomocytes.
Figure 5: rme-6 accumulates chains of small yolk-receptor-positive vesicles.
Figure 6: Expression and subcellular localization of GFP–RME-6 in worm tissues.
Figure 7: GFP–RME-6 colocalizes strongly with clathrin-coated pit markers.
Figure 8: Physical and functional association of RME-6 and coated-pit proteins.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Brodsky, F.M., Chen, C.Y., Knuehl, C., Towler, M.C. & Wakeham, D.E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  3. Chavrier, P., Parton, R.G., Hauri, H.P., Simons, K. & Zerial, M. Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62, 317–329 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Christoforidis, S., McBride, H.M., Burgoyne, R.D. & Zerial, M. The Rab5 effector EEA1 is a core component of endosome docking. Nature 397, 621–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. McBride, H.M. et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 98, 377–386 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Nielsen, E., Severin, F., Backer, J.M., Hyman, A.A. & Zerial, M. Rab5 regulates motility of early endosomes on microtubules. Nature Cell Biol. 1, 376–382 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. de Renzis, S., Sonnichsen, B. & Zerial, M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell Biol. 4, 124–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Horiuchi, H. et al. A novel rab5 GDP/GTP exchange factor complexed to rabaptin-5 links nucleotide exchange to effector recruitment and function. Cell 90, 1149–1159 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Rubino, M., Miaczynska, M., Lippe, R. & Zerial, M. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. McLauchlan, H. et al. A novel role for Rab5-GDI in ligand sequestration into clathrin-coated pits. Curr. Biol. 8, 34–45 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Delprato, A., Merithew, E. & Lambright, D.G. Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell 118, 607–617 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Tall, G.G., Barbieri, M.A., Stahl, P.D. & Horazdovsky, B.F. Ras-activated endocytosis is mediated by the Rab5 guanine nucleotide exchange activity of RIN1. Dev. Cell 1, 73–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Topp, J.D., Gray, N.W., Gerard, R.D. & Horazdovsky, B.F. Alsin is a Rab5 and Rac1 guanine nucleotide exchange factor. J. Biol. Chem. 279, 24612–24623 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Horiuchi, H., Giner, A., Hoflack, B. & Zerial, M. A GDP/GTP exchange-stimulatory activity for the Rab5-RabGDI complex on clathrin-coated vesicles from bovine brain. J. Biol. Chem. 270, 11257–11262 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Grant, B. & Hirsh, D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol. Biol. Cell 10, 4311–4326 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fares, H. & Greenwald, I. Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. Genetics 159, 133–145 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bernards, A. GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim. Biophys. Acta 1603, 47–82 (2003).

    CAS  PubMed  Google Scholar 

  19. Hajnal, A., Whitfield, C.W. & Kim, S.K. Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase. Genes Dev. 11, 2715–2728 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayashizaki, S., Iino, Y. & Yamamoto, M. Characterization of the C. elegans gap-2 gene encoding a novel Ras-GTPase activating protein and its possible role in larval development. Genes Cells 3, 189–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hart, M.J., Callow, M.G., Souza, B. & Polakis, P. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J. 15, 2997–3005 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hama, H., Tall, G.G. & Horazdovsky, B.F. Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J. Biol. Chem. 274, 15284–15291 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Stenmark, H., Vitale, G., Ullrich, O. & Zerial, M. Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion. Cell 83, 423–432 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y., Grant, B. & Hirsh, D. RME-8, a conserved J-domain protein, is required for endocytosis in Caenorhabditis elegans. Mol. Biol. Cell 12, 2011–2021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Greener, T. et al. Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nature Cell Biol. 3, 215–219 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Fares, H. & Grant, B. Deciphering endocytosis in Caenorhabditis elegans. Traffic 3, 11–19 (2002).

    Article  PubMed  Google Scholar 

  27. Pellettieri, J., Reinke, V., Kim, S.K. & Seydoux, G. Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev. Cell 5, 451–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Praitis, V., Casey, E., Collar, D. & Austin, J. Creation of low-copy integrated transgenic lines in Caenorhabditis elegans. Genetics 157, 1217–1226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barbieri, M.A. et al. Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires Rab5a. J. Cell Biol. 151, 539–550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Galperin, E. & Sorkin, A. Visualization of Rab5 activity in living cells by FRET microscopy and influence of plasma-membrane-targeted Rab5 on clathrin-dependent endocytosis. J. Cell Sci. 116, 4799–4810 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Christoforidis, S. et al. Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nature Cell Biol. 1, 249–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Shiba, Y., Takatsu, H., Shin, H.W. & Nakayama, K. Gamma-adaptin interacts directly with Rabaptin-5 through its ear domain. J. Biochem. (Tokyo) 131, 327–336 (2002).

    Article  CAS  Google Scholar 

  33. Mattera, R., Arighi, C.N., Lodge, R., Zerial, M. & Bonifacino, J.S. Divalent interaction of the GGAs with the Rabaptin-5–Rabex-5 complex. EMBO J. 22, 78–88 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mishra, S.K. et al. Dual-engagement regulation of protein interactions with the AP-2 adaptor alpha appendage. J. Biol. Chem. (2004).

  35. Han, M. & Sternberg, P.W. let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein. Cell 63, 921–931 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dang, H., Li, Z., Skolnik, E.Y. & Fares, H. Disease-related myotubularins function in endocytic traffic in Caenorhabditis elegans. Mol. Biol. Cell 15, 189–196 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kamath, R.S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Williams, B.D., Schrank, B., Huynh, C., Shownkeen, R. & Waterston, R.H. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131, 609–624 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fares, H. & Greenwald, I. Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nature Genet. 28, 64–68 (2001).

    CAS  PubMed  Google Scholar 

  44. Grant, B. et al. Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nature Cell Biol. 3, 573–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Shaye, D.D. & Greenwald, I. Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 420, 686–690 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Liou, W., Geuze, H.J. Slot, J.W. Improving structural integrity of cryosections for immunogold labeling. Histochem. Cell Biol. 106, 41–58 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Fares, Y. Zhang, D. Hirsh and G. Seydoux for important reagents; R. Y. Tsien for mRFP plasmids; S. Mitani for the rabx-5 knockout strain; S. Yamashiro and F. Matsumura for help with mammalian cell culture; and I. Greenwald and H. Fares for critical reading of this manuscript. We also thank P. Schweinsberg, L. Pedraza and W. Przylecki for expert technical assistance. B.D.G. is especially grateful to D. Hirsh for his strong support during the early phases of this work. M.S. and K.S. were supported by JSPS Postdoctoral Fellowship for Research Abroad and Bioarchitect Research Projects of RIKEN, respectively. This work was supported by a NIH Grant GM67237 and MOD Grant 5-FY02-252 to B.D.G. B.D.G. also received support from the Chicago Community Trust Searle Scholars Program. W.L. was supported by a Grant NSC 91-2320-B-182-034 of National Science Council of Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barth D. Grant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1, S2, S3 and S4 (PDF 423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Sato, K., Fonarev, P. et al. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol 7, 559–569 (2005). https://doi.org/10.1038/ncb1261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1261

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing