Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) influences cytotoxicity, translocating to the nucleus during apoptosis. Here we report a signalling pathway in which nitric oxide (NO) generation that follows apoptotic stimulation elicits S-nitrosylation of GAPDH, which triggers binding to Siah1 (an E3 ubiquitin ligase), nuclear translocation and apoptosis. S-nitrosylation of GAPDH augments its binding to Siah1, whose nuclear localization signal mediates translocation of GAPDH. GAPDH stabilizes Siah1, facilitating its degradation of nuclear proteins. Activation of macrophages by endotoxin and of neurons by glutamate elicits GAPDH–Siah1 binding, nuclear translocation and apoptosis, which are prevented by NO deletion. The NO–S-nitrosylation–GAPDH–Siah1 cascade may represent an important molecular mechanism of cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GAPDH interacts with Siah1.
Figure 2: Nuclear translocation of GAPDH elicited by Siah1.
Figure 3: Stabilization of Siah1 protein by GAPDH.
Figure 4: NO causes nuclear accumulation of sulphonated GAPDH (sGAPDH).
Figure 5: S-nitrosylation of GAPDH enhances its binding to Siah1.
Figure 6: NO promotes translocation of GAPDH to the nucleus following Siah1 binding.
Figure 7: GAPDH–Siah1 cell death cascade in neurons.
Figure 8: Siah1's cytotoxic actions involve degradation of its nuclear substrates.

Similar content being viewed by others

References

  1. Sirover, M. A. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta 1432, 159–184 (1999).

    Article  CAS  Google Scholar 

  2. Sawa, A., Khan, A. A., Hester, L. D. & Snyder, S. H. Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc. Natl Acad. Sci. USA 94, 11669–11674 (1997).

    Article  CAS  Google Scholar 

  3. Saunders, P. A., Chalecka-Franaszek, E. & Chuang, D. M. Subcellular distribution of glyceraldehyde-3-phosphate dehydrogenase in cerebellar granule cells undergoing cytosine arabinoside-induced apoptosis. J. Neurochem. 69, 1820–1828 (1997).

    Article  CAS  Google Scholar 

  4. Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N. & Chuang, D. M. Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol. Pharmacol. 53, 701–707 (1998).

    Article  CAS  Google Scholar 

  5. Kragten, E. et al. Glyceraldehyde-3-phosphate dehydrogenase, the putative target of the antiapoptotic compounds CGP 3466 and R-(-)-deprenyl. J. Biol. Chem. 273, 5821–5828 (1998).

    Article  CAS  Google Scholar 

  6. Carlile, G. W. et al. Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol. Pharmacol. 57, 2–12 (2000).

    CAS  PubMed  Google Scholar 

  7. Dastoor, Z. & Dreyer, J. L. Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J. Cell Sci. 114, 1643–1653 (2001).

    CAS  PubMed  Google Scholar 

  8. Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M. & Reed, J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17, 2736–2747 (1998).

    Article  CAS  Google Scholar 

  9. Burke, J. R. et al. Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nature Med. 2, 347–350 (1996).

    Article  CAS  Google Scholar 

  10. Koshy, B. et al. Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum. Mol. Genet. 5, 1311–1318 (1996).

    Article  CAS  Google Scholar 

  11. Reed, J. C. & Ely, K. R. Degrading liaisons: Siah structure revealed. Nature Struct. Biol. 9, 8–10 (2002).

    Article  CAS  Google Scholar 

  12. Amson, R. B. et al. Isolation of 10 differentially expressed cDNAs in p53-induced apoptosis: activation of the vertebrate homologue of the drosophila seven in absentia gene. Proc. Natl Acad. Sci. USA 93, 3953–3957 (1996).

    Article  CAS  Google Scholar 

  13. Roperch, J. P. et al. SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21(Waf1). Proc. Natl Acad. Sci. USA 96, 8070–8073 (1999).

    Article  CAS  Google Scholar 

  14. Fiucci, G. et al. Siah-1b is a direct transcriptional target of p53: identification of the functional p53 responsive element in the siah-1b promoter. Proc. Natl Acad. Sci. USA 101, 3510–3515 (2004).

    Article  CAS  Google Scholar 

  15. Hu, G. & Fearon, E. R. Siah-1 N-terminal RING domain is required for proteolysis function, and C-terminal sequences regulate oligomerization and binding to target proteins. Mol. Cell. Biol. 19, 724–732 (1999).

    Article  CAS  Google Scholar 

  16. McDonald, L. J. & Moss, J. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase. Proc. Natl Acad. Sci. USA 90, 6238–6241 (1993).

    Article  CAS  Google Scholar 

  17. Mohr, S., Stamler, J. S. & Brune, B. Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment. J. Biol. Chem. 271, 4209–4214 (1996).

    Article  CAS  Google Scholar 

  18. Foster, M. W., McMahon, T. J. & Stamler, J. S. S-nitrosylation in health and disease. Trends Mol. Med. 9, 160–168 (2003).

    Article  CAS  Google Scholar 

  19. Matsumoto, A., Comatas, K. E., Liu, L. & Stamler, J. S. Screening for nitric oxide-dependent protein-protein interactions. Science 301, 657–661 (2003).

    Article  CAS  Google Scholar 

  20. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder, S. H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature Cell Biol. 3, 193–197 (2001).

    Article  CAS  Google Scholar 

  21. Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nature Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  22. House, C. M. et al. A binding motif for Siah ubiquitin ligase. Proc. Natl Acad. Sci. USA 100, 3101–3106 (2003).

    Article  CAS  Google Scholar 

  23. Eu, J. P., Liu, L., Zeng, M. & Stamler, J. S. An apoptotic model for nitrosative stress. Biochemistry 39, 1040–1047 (2000).

    Article  CAS  Google Scholar 

  24. Zheng, L., Roeder, R. G. & Luo, Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 255–266 (2003).

    Article  CAS  Google Scholar 

  25. Dawson, V. L., Dawson, T. M., London, E. D., Bredt, D. S. & Snyder, S. H. Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl Acad. Sci. USA 88, 6368–6371 (1991).

    Article  CAS  Google Scholar 

  26. Huang, Z. et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883–1885 (1994).

    Article  CAS  Google Scholar 

  27. Horlein, A. J. et al. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377, 397–404 (1995).

    Article  CAS  Google Scholar 

  28. Zhang, J., Guenther, M. G., Carthew, R. W. & Lazar, M. A. Proteasomal regulation of nuclear receptor corepressor-mediated repression. Genes Dev. 12, 1775–1780 (1998).

    Article  CAS  Google Scholar 

  29. Ischiropoulos, H. & Beckman, J. S. Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J. Clin. Invest. 111, 163–169 (2003).

    Article  CAS  Google Scholar 

  30. Bustamante, J. et al. Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis. Nitric Oxide 6, 333–341 (2002).

    Article  CAS  Google Scholar 

  31. Li, H. & Forstermann, U. Structure-activity relationship of staurosporine analogs in regulating expression of endothelial nitric-oxide synthase gene. Mol. Pharmacol. 57, 427–435 (2000).

    Article  CAS  Google Scholar 

  32. Almeida, A., Almeida, J., Bolanos, J. P. & Moncada, S. Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc. Natl Acad. Sci. USA 98, 15294–15299 (2001).

    Article  CAS  Google Scholar 

  33. Almeida, A., Moncada, S. & Bolanos, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biol. 6, 45–51 (2004).

    Article  CAS  Google Scholar 

  34. Liu, L. et al. Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116, 617–628 (2004).

    Article  CAS  Google Scholar 

  35. Eliasson, M. J. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med. 3, 1089–1095 (1997).

    Article  CAS  Google Scholar 

  36. Moncada, S. & Erusalimsky, J. D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nature Rev. Mol. Cell Biol. 3, 214–220 (2002).

    Article  CAS  Google Scholar 

  37. Stefanelli, C. et al. ATP depletion inhibits glucocorticoid-induced thymocyte apoptosis. Biochem. J. 322, 909–917 (1997).

    Article  CAS  Google Scholar 

  38. Della, N. G., Senior, P. V. & Bowtell, D. D. Isolation and characterisation of murine homologues of the Drosophila seven in absentia gene (sina). Development 117, 1333–1343 (1993).

    CAS  PubMed  Google Scholar 

  39. Wheeler, T. C., Chin, L. S., Li, Y., Roudabush, F. L. & Li, L. Regulation of synaptophysin degradation by mammalian homologues of seven in absentia. J. Biol. Chem. 277, 10273–10282 (2002).

    Article  CAS  Google Scholar 

  40. Matsuzawa, S. I. & Reed, J. C. Siah-1, SIP, and Ebi collaborate in a novel pathway for β-catenin degradation linked to p53 responses. Mol. Cell 7, 915–926 (2001).

    Article  CAS  Google Scholar 

  41. Li, Y. et al. Association of late-onset Alzheimer's disease with genetic variation in multiple members of the GAPD gene family. Proc. Natl Acad. Sci. USA 101, 15688–15693 (2004).

    Article  CAS  Google Scholar 

  42. Tatton, W. G. & Chalmers-Redman, R. M. Modulation of gene expression rather than monoamine oxidase inhibition: (-)-deprenyl-related compounds in controlling neurodegeneration. Neurology 47, S171–S183 (1996).

    Article  CAS  Google Scholar 

  43. Waldmeier, P. C., Boulton, A. A., Cools, A. R., Kato, A. C. & Tatton, W. G. Neurorescuing effects of the GAPDH ligand CGP 3466B. J. Neural Transm. Suppl. 197–214 (2000).

  44. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  Google Scholar 

  45. Yu, J. Y., DeRuiter, S. L. & Turner, D. L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).

    Article  CAS  Google Scholar 

  46. Capco, D. G., Wan, K. M. & Penman, S. The nuclear matrix: three-dimensional architecture and protein composition. Cell 29, 847–858 (1982).

    Article  CAS  Google Scholar 

  47. Nunoshiba, T., deRojas-Walker, T., Wishnok, J. S., Tannenbaum, S. R. & Demple, B. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc. Natl Acad. Sci. USA 90, 9993–9997 (1993).

    Article  CAS  Google Scholar 

  48. Cheung, W. L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517 (2003).

    Article  CAS  Google Scholar 

  49. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl Acad. Sci. USA 92, 7162–7166 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by USPHS grants DA-00266, Research Scientist Award DA-00074 (S.H.S.) and MH-069853 (A.S.), and grants from HDSA, HDF, NARSAD, Stanley and S-R foundations (A.S.). We thank L. Hanle, X. Luo, S. Sutcliffe, J. Park, J. Zarach and R. N. Cole for their technical assistance. We thank J. T. Issacs, C. A. Ross, T. W. Sedlak, H. R. Luo, D. Boehning, B.-I. Bae, A. Huang, A. Resnick, H. Uejima, and members of the Snyder laboratory for helpful discussion. We thank D. Dodson, A. Onda and Y. Lema for organizing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Solomon H. Snyder or Akira Sawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures S1, S2, S3 and S4 plus supplementary methods (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hara, M., Agrawal, N., Kim, S. et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7, 665–674 (2005). https://doi.org/10.1038/ncb1268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing