Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol

Abstract

Peroxisomal import receptors bind their cargo proteins in the cytosol and target them to docking and translocation machinery at the peroxisomal membrane (reviewed in ref. 1). The receptors release the cargo proteins into the peroxisomal lumen and, according to the model of cycling receptors, they are supposed to shuttle back to the cytosol. This shuttling of the receptors has been assigned to peroxins including the AAA peroxins Pex1p and Pex6p, as well as the ubiquitin-conjugating enzyme Pex4p (reviewed in ref. 2). One possible target for Pex4p is the PTS1 receptor Pex5p, which has recently been shown to be ubiquitinated3,4,5. Pex1p and Pex6p are both cytosolic and membrane-associated AAA ATPases of the peroxisomal protein import machinery, the exact function of which is still unknown. Here we demonstrate that the AAA peroxins mediate the ATP-dependent dislocation of the peroxisomal targeting signal-1 (PTS1) receptor from the peroxisomal membrane to the cytosol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pex5p forms a complex with the AAA group peroxins and accumulates at the peroxisomal membrane in their absence.
Figure 2: In vitro export assays and localization studies of Pex5p.
Figure 3: The AAA peroxins dislocate Pex5p from the peroxisomal membrane to the cytosol.
Figure 4: Cycling of the PTS1 receptor Pex5p between the peroxisomal membrane and the cytosol.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Lazarow, P. B. Peroxisome biogenesis: advances and conundrums. Curr. Opin. Cell Biol. 15, 489–497 (2003).

    Article  CAS  Google Scholar 

  2. Brown, L. A. & Baker, A. Peroxisome biogenesis and the role of protein import. J. Cell. Mol. Med. 7, 388–400 (2003).

    Article  CAS  Google Scholar 

  3. Platta, H. W., Girzalsky, W. & Erdmann, R. Ubiquitination of the peroxisomal import receptor Pex5p. Biochem. J. 384, 37–45 (2004).

    Article  CAS  Google Scholar 

  4. Kiel, J. A., Emmrich, K., Meyer, H. E. & Kunau, W. H. Ubiquitination of the PTS1 receptor, Pex5p, suggests the presence of a quality control mechanism during peroxisomal matrix protein import. J. Biol. Chem. 280, 1921–1930 (2005).

    Article  CAS  Google Scholar 

  5. Kragt, A., Voorn-Brouwer, T. M., Van den Berg, M. & Distel, B. The Saccharomyces cerevisiae peroxisomal import receptor Pex5p is monoubiquitinated in wild type cells. J. Biol. Chem. 280, 7867–7874 (2005).

    Article  CAS  Google Scholar 

  6. Oliveira, M. E., Gouveia, A. M., Pinto, R. A., Sa-Miranda, C. & Azevedo, J. E. The energetics of Pex5p-mediated peroxisomal protein import. J. Biol. Chem. 278, 39483–39488 (2003).

    Article  CAS  Google Scholar 

  7. Costa-Rodrigues, J. et al. The N-terminus of the peroxisomal cycling receptor, Pex5p, is required for redirecting the peroxisome-associated peroxin back to the cytosol. J. Biol. Chem. 279, 46573–46579 (2004).

    Article  CAS  Google Scholar 

  8. Gouveia, A. M. et al. Characterization of the peroxisomal cycling receptor Pex5p import pathway. Adv. Exp. Med. Biol. 544, 213–220 (2003).

    Google Scholar 

  9. Collins, C. S., Kalish, J. E., Morrell, J. C., McCaffery, J. M. & Gould, S. J. The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. Mol. Cell Biol. 20, 7516–7526 (2000).

    Article  CAS  Google Scholar 

  10. Erdmann, R. & Blobel, G. Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p. J. Cell Biol. 128, 509–523 (1995).

    Article  CAS  Google Scholar 

  11. Marshall, P. A. et al. PMP27 promotes peroxisomal proliferation. J. Cell Biol. 129, 345–355 (1995).

    Article  CAS  Google Scholar 

  12. Entian, K. D., Vogel, R. F., Rose, M., Hofmann, L. & Mecke, D. Isolation and primary structure of the gene encoding fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. FEBS Lett. 236, 195–200 (1988).

    Article  CAS  Google Scholar 

  13. Holroyd, C. & Erdmann, R. Protein translocation machineries of peroxisomes. FEBS Lett. 501, 6–10 (2001).

    Article  CAS  Google Scholar 

  14. Subramani, S., Koller, A. & Snyder, W. B. Import of peroxisomal matrix and membrane proteins. Annu. Rev. Biochem. 2000, 399–418 (2000).

    Article  Google Scholar 

  15. Birschmann, I. et al. Pex15p of Saccharomyces cerevisiae provides a molecular basis for recruitment of the AAA Peroxin Pex6p to peroxisomal membranes. Mol. Biol. Cell 14, 2226–2236 (2003).

    Article  CAS  Google Scholar 

  16. Ghislain, M., Udvardy, A. & Mann, C. S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366, 358–362 (1993).

    Article  CAS  Google Scholar 

  17. Lee, R. J. et al. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J. 23, 2206–2215 (2004).

    Article  CAS  Google Scholar 

  18. Faber, K. N., Heyman, J. A. & Subramani, S. Two AAA family peroxins, PpPex1p and PpPex6p, interact with each other in an ATP-dependent manner and are associated with different subcellular membranous structures distinct from peroxisomes. Mol. Cell. Biol. 18, 936–943 (1998).

    Article  CAS  Google Scholar 

  19. Birschmann, I., Rosenkranz, K., Erdmann, R. & Kunau, W. -H. Structural and functional analysis of the interaction of the AAA-peroxins Pex1p and Pex6p. FEBS J. 272, 47–58 (2005).

    Article  CAS  Google Scholar 

  20. Erdmann, R., Veenhuis, M., Mertens, D. & Kunau, W. -H. Isolation of peroxisome-deficient mutants of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 86, 5419–5423 (1989).

    Article  CAS  Google Scholar 

  21. Girzalsky, W. et al. Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2 dependent protein import into peroxisomes. J. Cell Biol. 144, 1151–1162 (1999).

    Article  CAS  Google Scholar 

  22. Rehling, P. et al. Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor pex5p. J. Biol. Chem. 275, 3593–3602 (2000).

    Article  CAS  Google Scholar 

  23. Güldener, U., Heck, S., Fiedler, T., Beinhauer, J. & Hegemann, J. H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519–2524 (1996).

    Article  Google Scholar 

  24. Knop, M. et al. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15, 963–972 (1999).

    Article  CAS  Google Scholar 

  25. Erdmann, R. et al. PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Cell 64, 499–510 (1991).

    Article  CAS  Google Scholar 

  26. Agne, B. et al. Pex8p. An intraperoxisomal organizer of the peroxisomal import machinery. Mol. Cell 11, 635–646 (2003).

    Article  CAS  Google Scholar 

  27. Schäfer, A., Kerssen, D., Veenhuis, M., Kunau, W. H. & Schliebs, W. Functional similarity between the peroxisomal PTS2 receptor binding protein Pex18p and the N-terminal half of the PTS1 receptor Pex5p. Mol. Cell. Biol. 24, 8895–8906 (2004).

    Article  Google Scholar 

  28. Albertini, M. et al. Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89, 83–92 (1997).

    Article  CAS  Google Scholar 

  29. Erdmann, R. & Kunau, W. -H. Purification and immunolocalization of the peroxisomal 3-oxoacyl-CoA thiolase from Saccharomyces cerevisiae. Yeast 10, 1173–1182 (1994).

    Article  CAS  Google Scholar 

  30. Bigl, M. & Escherich, K. Overexpression of catalytically active yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase in Escherichia coli. Biol. Chem. 375, 153–160 (1994).

    Google Scholar 

Download references

Acknowledgements

We are grateful to U. Ricken for technical assistance. We thank C. Mann for kindly providing the cim5-1 strain and we are grateful to W.-H. Kunau, W. Schliebs and M. Witt-Reinhardt for the reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (SFB480, SFB642), the FP6 European Union Project 'Peroxisome' (LSHG–CT-2004–512018) and by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figure S1 (PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platta, H., Grunau, S., Rosenkranz, K. et al. Functional role of the AAA peroxins in dislocation of the cycling PTS1 receptor back to the cytosol. Nat Cell Biol 7, 817–822 (2005). https://doi.org/10.1038/ncb1281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing