Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks

An Erratum to this article was published on 12 March 2006

Abstract

The components of the replisome that preserve genomic stability by controlling the progression of eukaryotic DNA replication forks are poorly understood. Here, we show that the GINS (go ichi ni san) complex allows the MCM (minichromosome maintenance) helicase to interact with key regulatory proteins in large replisome progression complexes (RPCs) that are assembled during initiation and disassembled at the end of S phase. RPC components include the essential initiation and elongation factor, Cdc45, the checkpoint mediator Mrc1, the Tof1–Csm3 complex that allows replication forks to pause at protein–DNA barriers, the histone chaperone FACT (facilitates chromatin transcription) and Ctf4, which helps to establish sister chromatid cohesion. RPCs also interact with Mcm10 and topoisomerase I. During initiation, GINS is essential for a specific subset of RPC proteins to interact with MCM. GINS is also important for the normal progression of DNA replication forks, and we show that it is required after initiation to maintain the association between MCM and Cdc45 within RPCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 6: GINS is required for specific RPC components to associate with MCM and thus with origins.
Figure 1: GINS–MCM complexes contain many regulators of replication fork progression.
Figure 2: Stable interaction of GINS with other regulators of replication fork progression is not mediated by DNA.
Figure 3: GINS and MCM form large RPCs that also contain other regulators of replication fork progression.
Figure 4: RPCs are only present during S phase.
Figure 5: RPC formation requires loading of MCM at origins.
Figure 7: GINS is required to maintain the interaction between MCM and specific RPC components after initiation.

Similar content being viewed by others

References

  1. Aparicio, O. M., Weinstein, D. M. & Bell, S. P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM complexes and Cdc45p during S phase. Cell 91, 59–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Tercero, J. A., Labib, K. & Diffley, J. F. X. DNA synthesis at individual replication forks requires the essential initiation factor, Cdc45p. EMBO J. 19, 2082–2093 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Labib, K., Kearsey, S. E. & Diffley, J. F. MCM2–7 proteins are essential components of prereplicative complexes that accumulate cooperatively in the nucleus during G1-phase and are required to establish, but not maintain, the S-phase checkpoint. Mol. Biol. Cell 12, 3658–3667 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pacek, M. & Walter, J. C. A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. EMBO J. 23, 3667–3676 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shechter, D., Ying, C. Y. & Gautier, J. DNA unwinding is an Mcm complex-dependent and ATP hydrolysis-dependent process. J. Biol. Chem. 279, 45586–45593 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Jares, P. & Blow, J. J. Xenopus cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading. Genes Dev 14, 1528–1540 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Masuda, T., Mimura, S. & Takisawa, H. CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells 8, 145–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Walter, J. & Newport, J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol. Cell 5, 617–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Zou, L. & Stillman, B. Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p–Dbf4p kinase. Mol. Cell Biol. 20, 3086–3096 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Forsburg, S. L. Eukaryotic MCM proteins: beyond replication initiation. Microbiol. Mol. Biol. Rev. 68, 109–131 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kanemaki, M., Sanchez-Diaz, A., Gambus, A. & Labib, K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423, 720–725 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kubota, Y. et al. A novel ring-like complex of Xenopus proteins essential for the initiation of DNA replication. Genes Dev. 17, 1141–1152 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takayama, Y. et al. GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast. Genes Dev. 17, 1153–1165 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Makarova, K. S. et al. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 33, 4626–4638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  16. Calzada, A. et al. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev. 19, 1905–1919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tourriere, H. et al. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell 19, 699–706 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Mohanty, B. K., Bairwa, N. K. & Bastia, D. The Tof1p–Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 103, 897–902 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brewster, N. K., Johnston, G. C. & Singer, R. A. Characterization of the CP complex, an abundant dimer of Cdc68 and Pob3 proteins that regulates yeast transcriptional activation and chromatin repression. J. Biol. Chem. 273, 21972–21999 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Orphanides, G. et al. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Okuhara, K. et al. A DNA unwinding factor involved in DNA replication in cell-free extracts of Xenopus eggs. Curr. Biol. 9, 341–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Orphanides, G. et al. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284–288 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Schlesinger, M. B. & Formosa, T. POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155, 1593–1606 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Belotserkovskaya, R. et al. FACT facilitates transcription-dependent nucleosome alteration. Science 301, 1090–1093 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Alcasabas, A. A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell Biol. 3, 958–965 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Tanaka, K. & Russell, P. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nature Cell Biol. 3, 966–972 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Kouprina, N. et al. CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 12, 5736–5747 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miles, J. & Formosa, T. Protein affinity chromatography with purified yeast DNA polymerase α detects proteins that bind to DNA polymerase. Proc. Natl Acad. Sci. USA 89, 1276–1280 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanna, J. S., Kroll, E. S., Lundblad, V. & Spencer, F. A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell Biol. 21, 3144–3158 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, Y. & Wang, T. S. A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase α facilitates DNA replication. Mol. Cell Biol. 24, 9568–9579 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fien, K. et al. Primer utilization by DNA polymerase α-primase is influenced by its interaction with Mcm10p. J. Biol. Chem. 279, 16144–16153 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Ricke, R. M. & Bielinsky, A. K. Mcm10 regulates the stability and chromatin association of DNA polymerase α. Mol. Cell 16, 173–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kim, R. A. & Wang, J. C. Function of DNA topoisomerases as replication swivels in Saccharomyces cerevisiae. J. Mol. Biol. 208, 257–267 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Brill, S. J., DiNardo, S., Voelkel-Meiman, K. & Sternglanz, R. Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA. Nature 326, 414–416 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Diffley, J. F. X., Cocker, J. H., Dowell, S. J. & Rowley, A. Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303–316 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Chong, J. P. J., Mahbubani, H. M., Khoo, C.-Y. & Blow, J. J. Purification of an MCM-containing complex as a component of the DNA replication licensing system. Nature 375, 418–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Kubota, Y. et al. Identification of the yeast MCM3-related protein as a component of Xenopus DNA replication licensing factor. Cell 81, 601–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Tanaka, T., Knapp, D. & Nasmyth, K. Loading of an Mcm protein onto DNA-replication origins is regulated by Cdc6p and CDKs. Cell 90, 649–660 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Coleman, T. R., Carpenter, P. B. & Dunphy, W. G. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87, 53–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Donovan, S., Harwood, J., Drury, L. S. & Diffley, J. F. X. Cdc6-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc. Natl Acad. Sci. USA 94, 5611–5616 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dohmen, R. J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Labib, K., Tercero, J. A. & Diffley, J. F. X. Uninterrupted MCM2–7 function required for DNA replication fork progression. Science 288, 1643–1647 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Osborn, A. J. & Elledge, S. J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17, 1755–1767 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078–1083 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Simmons, D. T., Melendy, T., Usher, D. & Stillman, B. Simian virus 40 large T antigen binds to topoisomerase I. Virology 222, 365–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Wobbe, C. R. et al. Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc. Natl Acad. Sci. USA 84, 1834–1838 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, L. et al. Roles of DNA topoisomerases in simian virus 40 DNA replication in vitro. Proc. Natl Acad. Sci. USA 84, 950–954 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wold, M. S., Weinberg, D. H., Virshup, D. M., Li, J. J. & Kelly, T. J. Identification of cellular proteins required for simian virus 40 DNA replication. J. Biol. Chem. 264, 2801–2809 (1989).

    CAS  PubMed  Google Scholar 

  49. Ueno, M. et al. PSF1 is essential for early embryogenesis in mice. Mol. Cell Biol. 25, 10528–10532 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoshida, K. et al. Requirement of CDC45 for postimplantation mouse development. Mol. Cell Biol. 21, 4598–4603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gotter, A. L. Tipin, a novel timeless-interacting protein, is developmentally co-expressed with timeless and disrupts its self-association. J. Mol Biol. 331, 167–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Lee, B. S., Grewal, S. I. & Klar, A. J. Biochemical interactions between proteins and mat1 cis-acting sequences required for imprinting in fission yeast. Mol. Cell Biol. 24, 9813–9822 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Noguchi, E. et al. Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol. Cell Biol. 24, 8342–8355 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mayer, M. L. et al. Identification of protein complexes required for efficient sister chromatid cohesion. Mol. Biol. Cell 15, 1736–1745 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Obama, K. et al. Up-regulation of PSF2, a member of the GINS multiprotein complex, in intrahepatic cholangiocarcinoma. Oncol. Rep. 14, 701–706 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Chiang for help with yeast strain construction, E. Schiebel for use of his equipment and Y. Kawasaki and A. Sugino for generously providing us with anti-Mcm10 antibody. We are grateful to J. Blow for helpful discussions and to S.D. Bell for sharing unpublished data. This work was funded by Cancer Research UK from whom K.L. receives a Senior Cancer Research Fellowship and by the EMBO Young Investigator Programme. A.S.D. received a Marie Curie training fellowship from the European Union and M.K. is funded by a Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship for research abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Labib.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, Table 1 and 2 and Supplementary Methods (PDF 3652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gambus, A., Jones, R., Sanchez-Diaz, A. et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8, 358–366 (2006). https://doi.org/10.1038/ncb1382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing