Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast

Abstract

The Saccharomyces cerevisiae general amino-acid permease, Gap1p, is a model for membrane proteins that are regulated by intracellular sorting according to physiological cues set by the availability of amino acids. Here, we report the identification of a conserved sorting complex for Gap1p, named the GTPase-containing complex for Gap1p sorting in the endosomes (GSE complex), which is required for proper sorting of Gap1p from the late endosome for eventual delivery to the plasma membrane. The complex contains two small GTPases (Gtr1p and Gtr2p) and three other proteins (Ybr077c, Ykr007w and Ltv1p) that are located in the late endosomal membrane. Importantly, Gtr2p interacts with the carboxy (C)-terminal cytosolic domain of Gap1p and a tyrosine-containing motif in this domain is necessary both to bind Gtr2p and to direct sorting of Gap1p to the plasma membrane. Together, these studies provide evidence that the GSE complex has a key role in trafficking Gap1p out of the endosome and may serve as coat proteins in this process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gtr1p and Gtr2p associate in a large cytosolic complex.
Figure 2: The Gse complex is required for Gap1p sorting from an internal compartment to the plasma membrane.
Figure 3: The Gse complex contains four peripheral proteins and one lipid-anchored protein colocalized to the endosome.
Figure 4: Alternative nucleotide-bound states of Gtr1p and Gtr2p are required for Gap1p activity.
Figure 5: Gap1p and Gtr2p interact and colocalize to the endosomal membranes.
Figure 6: Gap1p sorting to the plasma membrane depends on interaction with Gtr2p.

Similar content being viewed by others

References

  1. Piper, R. C., Cooper, A. A., Yang, H. & Stevens, T. H. VPS27 controls vacuolar and endocytic traffic through a prevacuolar compartment in Saccharomyces cerevisiae. J. Cell Biol. 131, 603–617 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Gerrard, S. R., Bryant, N. J. & Stevens, T. H. VPS21 controls entry of endocytosed and biosynthetic proteins into the yeast prevacuolar compartment. Mol. Biol. Cell 11, 613–626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cooper, A. A. & Stevens, T. H. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J. Cell Biol. 133, 529–541 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Lemmon, S. K. & Traub, L. M. Sorting in the endosomal system in yeast and animal cells. Curr. Opin. Cell Biol. 12, 457–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Mol. Biol. Cell 3, 1389–1402 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seaman, M. N., Marcusson, E. G., Cereghino, J. L. & Emr, S. D. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J. Cell Biol. 137, 79–92 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Redding, K., Brickner, J. H., Marschall, L. G., Nichols, J. W. & Fuller, R. S. Allele-specific suppression of a defective trans-Golgi network (TGN) localization signal in Kex2p identifies three genes involved in localization of TGN transmembrane proteins. Mol. Cell Biol. 16, 6208–6217 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seaman, M. N., McCaffery, J. M. & Emr, S. D. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seaman, M. N. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Arighi, C. N., Hartnell, L. M., Aguilar, R. C., Haft, C. R. & Bonifacino, J. S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Helliwell, S. B., Losko, S. & Kaiser, C. A. Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Soetens, O., De Craene, J. O. & Andre, B. Ubiquitin is required for sorting to the vacuole of the yeast general amino acid permease, Gap1. J. Biol. Chem. 276, 43949–43957 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Nakashima, N., Noguchi, E. & Nishimoto, T. Saccharomyces cerevisiae putative G protein, Gtr1p, which forms complexes with itself and a novel protein designated as Gtr2p, negatively regulates the Ran/Gsp1p G protein cycle through Gtr2p. Genetics 152, 853–867 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Audhya, A. et al. Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J. 23, 3747–3757 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E. & De Virgilio, C. The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15–26 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Abraham, P. R., Mulder, A., Van 't Riet, J., Planta, R. J. & Raue, H. A. Molecular cloning and physical analysis of an 8.2 kb segment of chromosome XI of Saccharomyces cerevisiae reveals five tightly linked genes. Yeast 8, 227–238 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, X. D., Wang, J., Keppler-Ross, S. & Dean, N. ERS1 encodes a functional homologue of the human lysosomal cystine transporter. FEBS J. 272, 2497–2511 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Gerrard, S. R., Levi, B. P. & Stevens, T. H. Pep12p is a multifunctional yeast syntaxin that controls entry of biosynthetic, endocytic and retrograde traffic into the prevacuolar compartment. Traffic 1, 259–269 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Benedetti, H., Raths, S., Crausaz, F. & Riezman, H. The END3 gene encodes a protein that is required for the internalization step of endocytosis and for actin cytoskeleton organization in yeast. Mol. Biol. Cell 5, 1023–1037 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roberg, K. J., Rowley, N. & Kaiser, C. A. Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae. J. Cell Biol. 137, 1469–1482 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bowers, K. & Stevens, T. H. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta. 1744, 438–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Conibear, E. & Stevens, T. H. Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol. Biol. Cell 11, 305–323 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Siniossoglou, S. & Pelham, H. R. An effector of Ypt6p binds the SNARE Tlg1p and mediates selective fusion of vesicles with late Golgi membranes. EMBO J. 20, 5991–5998 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bugnicourt, A. et al. Antagonistic roles of ESCRT and Vps class C/HOPS complexes in the recycling of yeast membrane proteins. Mol. Biol. Cell 15, 4203–4214 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wiederkehr, A., Avaro, S., Prescianotto-Baschong, C., Haguenauer-Tsapis, R. & Riezman, H. The F-box protein Rcy1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. J. Cell Biol. 149, 397–410 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ashrafi, K., Farazi, T. A. & Gordon, J. I. A role for Saccharomyces cerevisiae fatty acid activation protein 4 in regulating protein N-myristoylation during entry into stationary phase. J. Biol. Chem 273, 25864–25874 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Resh, M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta. 1451, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Becherer, K. A., Rieder, S. E., Emr, S. D. & Jones, E. W. Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast. Mol. Biol. Cell 7, 579–594 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boguski, M. S. & McCormick, F. Proteins regulating Ras and its relatives. Nature 366, 643–654 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Schurmann, A., Brauers, A., Massmann, S., Becker, W. & Joost, H. G. Cloning of a novel family of mammalian GTP-binding proteins (RagA, RagBs, RagB1) with remote similarity to the Ras-related GTPases. J. Biol. Chem 270, 28982–28988 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Sekiguchi, T., Hirose, E., Nakashima, N., Ii, M. & Nishimoto, T. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 276, 7246–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T. & Emr, S. D. Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. Dev. Cell 3, 271–282 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Rieder, S. E., Banta, L. M., Kohrer, K., McCaffery, J. M. & Emr, S. D. Multilamellar endosome-like compartment accumulates in the yeast vps28 vacuolar protein sorting mutant. Mol. Biol. Cell 7, 985–999 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Malkus, P., Jiang, F. & Schekman, R. Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J. Cell Biol. 159, 915–921 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, E. J. & Kaiser, C. A. Amino acids regulate the intracellular trafficking of the general amino acid permease of Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 14837–14842 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Springer, S., Spang, A. & Schekman, R. A primer on vesicle budding. Cell 97, 145–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Ram, R. J., Li, B. & Kaiser, C. A. Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol. Biol. Cell 13, 1484–1500 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roberg, K. J., Crotwell, M., Espenshade, P., Gimeno, R. & Kaiser, C. A. LST1 is a SEC24 homologue used for selective export of the plasma membrane ATPase from the endoplasmic reticulum. J. Cell Biol. 145, 659–672 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaiser, C. A., Chen, E. J. & Losko, S. Subcellular fractionation of secretory organelles. Methods Enzymol. 351, 325–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Sikorski, R. S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ljungdahl, P. O., Gimeno, C. J., Styles, C. A. & Fink, G. R. SHR3: a novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast. Cell 71, 463–478 (1992).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Watson in the Whitehead Institute (Boston, MA) for assistance with confocal microscopy and M. Ericsson in the Harvard Medical School electron microscopy facility for assistance with immunoelectron microscopy. We are grateful to A. McAinsh, M. Rubio-Texeira, E. Chen, A. Vala, L. Lan and Y. Ma for strains, plasmids or the preparation of mouse total RNA. We also thank members of the Kaiser lab for helpful comments. This study was conducted using the W.M. Keck Foundation Biological Imaging Facility at the Whitehead Institute. This work was supported by National Institutes of Health grant GM56933 to C.A.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris A. Kaiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figure S1 and Supplementary Table S1 (PDF 943 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Kaiser, C. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 8, 657–667 (2006). https://doi.org/10.1038/ncb1419

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1419

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing