Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export

Abstract

The DExD/H-box ATPase Dbp5 is essential for nuclear mRNA export, although its precise role in this process remains poorly understood. Here, we identify the nuclear pore protein Gle1 as a cellular activator of Dbp5. Dbp5 alone is unable to stably bind RNA or effectively hydrolyse ATP under physiological conditions, but addition of Gle1 dramatically stimulates these activities. A gle1 point mutant deficient for Dbp5 stimulation in vitro displays an mRNA export defect in vivo, indicating that activation of Dbp5 is an essential function of Gle1. Interestingly, Gle1 binds directly to inositol hexakisphosphate (InsP6) and InsP6 potentiates the Gle1-mediated stimulation of Dbp5. Dominant mutations in DBP5 and GLE1 that rescue mRNA export phenotypes associated with the lack of InsP6 mimic the InsP6 effects in vitro. Our results define specific functions for Gle1 and InsP6 in mRNA export and suggest that local activation of Dbp5 at the nuclear pore is critical for mRNA export.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gle1 is an activator of Dbp5 in vitro.
Figure 2: A novel temperature-sensitive gle1 allele identified through directed mutagenesis.
Figure 3: gle1R287A causes an mRNA export in vivo.
Figure 4: InsP6 modulates the interaction between Gle1 and Dbp5.
Figure 5: A dominant allele of DBP5 bypasses the requirement for InsP6 in vivo.
Figure 6: Dbp5L327V and Gle1H337R partially mimic the InsP6-mediated enhancement of kcat in vitro.

Similar content being viewed by others

References

  1. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  Google Scholar 

  2. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev. Mol. Cell. Biol. 5, 232–241 (2004).

    Article  CAS  Google Scholar 

  3. Jankowsky, E., Gross, C. H., Shuman, S. & Pyle, A. M. Active disruption of an RNA–protein interaction by a DExH/D RNA helicase. Science 291, 121–125 (2001).

    Article  CAS  Google Scholar 

  4. Fairman, M. E. et al. Protein displacement by DExH/D 'RNA helicases' without duplex unwinding. Science 304, 730–734 (2004).

    Article  CAS  Google Scholar 

  5. Tseng, S. S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998).

    Article  CAS  Google Scholar 

  6. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).

    Article  CAS  Google Scholar 

  7. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).

    Article  CAS  Google Scholar 

  8. Hodge, C. A., Colot, H. V., Stafford, P. & Cole, C. N. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18, 5778–5788 (1999).

    Article  CAS  Google Scholar 

  9. Strahm, Y. et al. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J. 18, 5761–5777 (1999).

    Article  CAS  Google Scholar 

  10. Weirich, C. S., Erzberger, J. P., Berger, J. M. & Weis, K. The N-terminal domain of Nup159 forms a beta-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol. Cell 16, 749–760 (2004).

    Article  CAS  Google Scholar 

  11. Stutz, F. et al. The yeast nucleoporin rip1p contributes to multiple export pathways with no essential role for its FG-repeat region. Genes Dev. 11, 2857–2868 (1997).

    Article  CAS  Google Scholar 

  12. Saavedra, C. A., Hammell, C. M., Heath, C. V. & Cole, C. N. Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev. 11, 2845–2856 (1997).

    Article  CAS  Google Scholar 

  13. Lund, M. K. & Guthrie, C. The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol. Cell 20, 645–651 (2005).

    Article  CAS  Google Scholar 

  14. Zhao, J., Jin, S. B., Bjorkroth, B., Wieslander, L. & Daneholt, B. The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J. 21, 1177–1187 (2002).

    Article  CAS  Google Scholar 

  15. Estruch, F. & Cole, C. N. An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. Mol. Biol. Cell 14, 1664–1676 (2003).

    Article  CAS  Google Scholar 

  16. York, J. D., Odom, A. R., Murphy, R., Ives, E. B. & Wente, S. R. A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285, 96–100 (1999).

    Article  CAS  Google Scholar 

  17. Miller, A. L. et al. Cytoplasmic inositol hexakisphosphate production is sufficient for mediating the Gle1-mRNA export pathway. J. Biol. Chem. 279, 51022–51032 (2004).

    Article  CAS  Google Scholar 

  18. Hanakahi, L. A. & West, S. C. Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO J. 21, 2038–2044 (2002).

    Article  CAS  Google Scholar 

  19. Ma, Y. & Lieber, M. R. Binding of inositol hexakisphosphate (IP6) to Ku but not to DNA-PKcs. J. Biol. Chem. 277, 10756–10759 (2002).

    Article  CAS  Google Scholar 

  20. Hanakahi, L. A., Bartlet-Jones, M., Chappell, C., Pappin, D. & West, S. C. Binding of inositol phosphate to DNA-PK and stimulation of double-strand break repair. Cell 102, 721–729 (2000).

    Article  CAS  Google Scholar 

  21. Shen, X., Xiao, H., Ranallo, R., Wu, W. H. & Wu, C. Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299, 112–114 (2003).

    Article  CAS  Google Scholar 

  22. Steger, D. J., Haswell, E. S., Miller, A. L., Wente, S. R. & O'Shea, E. K. Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116 (2003).

    Article  CAS  Google Scholar 

  23. Saiardi, A., Resnick, A. C., Snowman, A. M., Wendland, B. & Snyder, S. H. Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl Acad. Sci. USA 102, 1911–1914 (2005).

    Article  CAS  Google Scholar 

  24. York, S. J., Armbruster, B. N., Greenwell, P., Petes, T. D. & York, J. D. Inositol diphosphate signaling regulates telomere length. J. Biol. Chem. 280, 4264–4269 (2005).

    Article  CAS  Google Scholar 

  25. Saiardi, A., Sciambi, C., McCaffery, J. M., Wendland, B. & Snyder, S. H. Inositol pyrophosphates regulate endocytic trafficking. Proc. Natl Acad. Sci. USA 99, 14206–14211 (2002).

    Article  CAS  Google Scholar 

  26. Macbeth, M. R. et al. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science 309, 1534–1539 (2005).

    Article  CAS  Google Scholar 

  27. Flick, J. S. & Thorner, J. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol. Cell. Biol. 13, 5861–5876 (1993).

    Article  CAS  Google Scholar 

  28. Odom, A. R., Stahlberg, A., Wente, S. R. & York, J. D. A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287, 2026–2029 (2000).

    Article  CAS  Google Scholar 

  29. Saiardi, A., Erdjument-Bromage, H., Snowman, A. M., Tempst, P. & Snyder, S. H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323–1326 (1999).

    Article  CAS  Google Scholar 

  30. Cordin, O., Banroques, J., Tanner, N. K. & Linder, P. The DEAD-box protein family of RNA helicases. Gene 367, 17–37 (2006).

    Article  CAS  Google Scholar 

  31. Larsson, C., Nilsson, A., Blomberg, A. & Gustafsson, L. Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J. Bacteriol. 179, 7243–7250 (1997).

    Article  CAS  Google Scholar 

  32. Estruch, F., Hodge, C. A., Rodriguez-Navarro, S. & Cole, C. N. Physical and genetic interactions link the yeast protein Zds1p with mRNA nuclear export. J. Biol. Chem. 280, 9691–9697 (2005).

    Article  CAS  Google Scholar 

  33. Rogers, G. W., Jr., Komar, A. A. & Merrick, W. C. eIF4A: the godfather of the DEAD box helicases. Prog. Nucleic Acid Res. Mol. Biol. 72, 307–331 (2002).

    Article  CAS  Google Scholar 

  34. Ballut, L. et al. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nature Struct. Mol. Biol. 12, 861–869 (2005).

    Article  CAS  Google Scholar 

  35. Rollenhagen, C., Hodge, C. A. & Cole, C. N. The nuclear pore complex and the DEAD box protein Rat8p/Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock. Mol. Cell. Biol. 24, 4869–4879 (2004).

    Article  CAS  Google Scholar 

  36. Takemura, R., Inoue, Y. & Izawa, S. Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J. Cell Sci. 117, 4189–4197 (2004).

    Article  CAS  Google Scholar 

  37. Vainberg, I. E., Dower, K. & Rosbash, M. Nuclear export of heat shock and non-heat-shock mRNA occurs via similar pathways. Mol. Cell. Biol. 20, 3996–4005 (2000).

    Article  CAS  Google Scholar 

  38. Ausubel, F. M. et al. (eds) Current Protocols in Molecular Biology (John Wiley and Sons, Hoboken,1987).

    Google Scholar 

  39. Yao, N. et al. Structure of the hepatitis C virus RNA helicase domain. Nature Struct. Biol. 4, 463–467 (1997).

    Article  CAS  Google Scholar 

  40. Yang, Q. & Jankowsky, E. ATP- and ADP-Dependent modulation of RNA unwinding and strand annealing activities by the DEAD-box protein DED1. Biochemistry 44, 13591–13601 (2005).

    Article  CAS  Google Scholar 

  41. Huang, T. G. & Hackney, D. D. Drosophila kinesin minimal motor domain expressed in Escherichia coli. Purification and kinetic characterization. J. Biol. Chem. 269, 16493–16501 (1994).

    CAS  PubMed  Google Scholar 

  42. Guarente, L. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101, 181–191 (1983).

    Article  CAS  Google Scholar 

  43. Maurer, P. et al. The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol. Biol. Cell 12, 539–549 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Preker, C. Guthrie, F. Stutz, Z. Liu, and A.M. Pyle for providing reagents. We thank N. Pokala for the plasmids pSV271, pSV272 and pSV212. We also thank E. Jankowsky, A. Schoeffler, P. Kalab and M. Blower and other members of the Berger, Thorner and Weis labs for discussions and comments on the manuscript. This work was supported by an National Science Foundation predoctoral fellowship to C.S.W., by a National Scientist Development Grant from the American Heart Association to J.S.F. and by National Institutes of Health Research Grants (GM71747 to J.M.B., GM21841 to J.T. and GM58065 to K.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Weis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, Supplementary Tables S1, S2, S3 and Supplementary Methods (PDF 802 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weirich, C., Erzberger, J., Flick, J. et al. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol 8, 668–676 (2006). https://doi.org/10.1038/ncb1424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1424

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing