Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells

A Corrigendum to this article was published on 01 October 2006

Abstract

Polarity is a central feature of eukaryotic cells and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) has a central role in the polarization of neurons and chemotaxing cells. In polarized epithelial cells, PtdIns(3,4,5)P3 is stably localized at the basolateral plasma membrane, but excluded from the apical plasma membrane, as shown by localization of GFP fused to the PtdIns(3,4,5)P3-binding pleckstrin-homology domain of Akt (GFP-PH–Akt), a fusion protein that indicates the location of PtdIns(3,4,5)P3. Here, we ectopically inserted exogenous PtdIns(3,4,5)P3 into the apical plasma membrane of polarized Madin-Darby canine kidney (MDCK) cells. Within 5 min many cells formed protrusions that extended above the apical surface. These protrusions contained basolateral plasma membrane proteins and excluded apical proteins, indicating that their plasma membrane was transformed from apical to basolateral. Addition of PtdIns(3,4,5)P3 to the basolateral surface of MDCK cells grown as cysts caused basolateral protrusions. MDCK cells grown in the presence of a phosphatidylinositol 3-kinase inhibitor had abnormally short lateral surfaces, indicating that PtdIns(3,4,5)P3 regulates the formation of the basolateral surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exogenous PtdIns(3,4,5)P3 delivered to the apical surface of MDCK cells induces protrusions.
Figure 2: Endogenous Rac1 and Cdc42 are activated by exogenous PtdIns(3,4,5)P3.
Figure 3: PtdIns(3,4,5)P3 regulates cell polarity.
Figure 4: PtdIns(3,4,5)P3 stimulates transcytosis.
Figure 5: PtdIns(3,4,5)P3 is required for formation and maintenance of the basolateral surface.

Similar content being viewed by others

References

  1. Gibson, M. C. & Perrimon, N. Apicobasal polarization: epithelial form and function. Curr. Opin. Cell Biol. 15, 747–752 (2003).

    Article  CAS  Google Scholar 

  2. Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    Article  CAS  Google Scholar 

  3. Yu, W. et al. β1-integrin orients epithelial polarity via Rac1 and laminin. Mol. Biol. Cell 16, 433–445 (2005).

    Article  CAS  Google Scholar 

  4. Wodarz, A. Establishing cell polarity in development. Nature Cell Biol. 4, E39–E44 (2002).

    Article  CAS  Google Scholar 

  5. Ohno, S. Intercellular junctions and cellular polarity: the PAR-aPKC complex, a conserved core cassette playing fundamental roles in cell polarity. Curr. Opin. Cell Biol. 13, 641–648 (2001).

    Article  CAS  Google Scholar 

  6. Macara, I. G. Par proteins: partners in polarization. Curr. Biol. 14, R160–R162 (2004).

    Article  CAS  Google Scholar 

  7. Mostov, K., Su, T. & ter Beest, M. Polarized epithelial membrane traffic: conservation and plasticity. Nature Cell Biol. 5, 287–293 (2003).

    Article  CAS  Google Scholar 

  8. Xu, J. et al. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201–214 (2003).

    Article  CAS  Google Scholar 

  9. Merlot, S. & Firtel, R. A. Leading the way: Directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J. Cell Sci. 116, 3471–3478 (2003).

    Article  CAS  Google Scholar 

  10. Van Haastert, P. J. & Devreotes, P. N. Chemotaxis: signalling the way forward. Nature Rev. Mol. Cell Biol. 5, 626–634 (2004).

    Article  CAS  Google Scholar 

  11. Huang, Y. E. et al. Receptor-mediated regulation of PI3Ks confines PI(3,4,5)P3 to the leading edge of chemotaxing cells. Mol. Biol. Cell 14, 1913–1922 (2003).

    Article  CAS  Google Scholar 

  12. Meili, R. & Firtel, R. A. Two poles and a compass. Cell 114, 153–156 (2003).

    Article  CAS  Google Scholar 

  13. Watton, S. J. & Downward, J. Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell-matrix and cell-cell interaction. Curr. Biol. 9, 433–436 (1999).

    Article  CAS  Google Scholar 

  14. Yu, W. et al. Hepatocyte growth factor switches orientation of polarity and mode of movement during morphogenesis of multicellular epithelial sructures. Mol. Biol. Cell 14, 748–763 (2003).

    Article  CAS  Google Scholar 

  15. Wang, F. et al. Lipid products of PI(3)Ks maintain persistent cell polarity and directed motility in neutrophils. Nature Cell Biol. 4, 513–518 (2002).

    Article  CAS  Google Scholar 

  16. Weiner, O. D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell. Biol. 4, 509–513 (2002).

    Article  CAS  Google Scholar 

  17. Ozaki, S., DeWald, D. B., Shope, J. C., Chen, J. & Prestwich, G. D. Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers. Proc. Natl Acad. Sci. USA 97, 11286–11291 (2000).

    Article  CAS  Google Scholar 

  18. Tian, W., Laffafian, I., Dewitt, S. & Hallett, M. B. Exclusion of exogenous phosphatidylinositol-3,4,5-trisphosphate from neutrophil-polarizing pseudopodia: stabilization of the uropod and cell polarity. EMBO Rep. 4, 982–988 (2003).

    Article  CAS  Google Scholar 

  19. Weiner, O. D. et al. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nature Cell Biol. 4, 509–513 (2002).

    Article  CAS  Google Scholar 

  20. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  21. Ridley, A. J. Rho family proteins: coordinating cell responses. Trends Cell Biol. 11, 471–477 (2001).

    Article  CAS  Google Scholar 

  22. Altschuler, Y. et al. Redundant and distinct functions for dynamin-1 and dynamin-2 isoforms. J. Cell Biol. 143, 1871–1881 (1998).

    Article  CAS  Google Scholar 

  23. Mostov, K., Apodaca, G., Aroeti, B. & Okamoto, C. Plasma membrane protein sorting in polarized epithelial cells. J. Cell Biol. 116, 577–583 (1992).

    Article  CAS  Google Scholar 

  24. von Stein, W., Ramrath, A., Grimm, A., Muller-Borg, M. & Wodarz, A. Direct association of Bazooka/PAR-3 with the lipid phosphatase PTEN reveals a link between the PAR/aPKC complex and phosphoinositide signaling. Development 132, 1675–1686 (2005).

    Article  CAS  Google Scholar 

  25. Kierbel, A., Gassama-Diagne, A., Mostov, K. & Engel, J. N. The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol. Biol. Cell 16, 2577–2585 (2005).

    Article  CAS  Google Scholar 

  26. Low, S.-H. et al. Differential localization of syntaxin isoforms in polarized MDCK cells. Mol. Biol. Cell 7, 2007–2018 (1996).

    Article  CAS  Google Scholar 

  27. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  Google Scholar 

  28. Apodaca, G., Katz, L. A. & Mostov, K. E. Receptor-mediated transcytosis of IgA in MDCK cells via apical recycling endosomes. J. Cell Biol. 125, 67–86 (1994).

    Article  CAS  Google Scholar 

  29. Hansen, S. H. et al. Induced expression of Rnd3 is associated with transformation of polarized epithelial cells by the Raf–MEK-extracellular signal-regulated kinase pathway. Mol. Cell. Biol. 20, 9364–9375 (2000).

    Article  CAS  Google Scholar 

  30. Lipschutz, J. H. et al. in Current Protocols Cell in Biology (Wiley and Sons.) 15.5 (2001).

Download references

Acknowledgements

We thank K. Matlin, G. Ojakian and B. Stevenson for reagents. We thank H. Bourne, O. Weiner, M. Zegers, P. Brakeman and members of our laboratory for advice and comments on the paper. and D. Mills for help with the manuscript. This work was supported by National Institutes of Health (NIH) grants to K.M. and J.E. W.Y. is supported by a fellowship from the National Kidney Foundation. F.M.-B. is supported by the Human Frontiers Science Program (HFSP).

Author information

Authors and Affiliations

Authors

Contributions

A.G. designed, performed and interpreted all of the experiments. W.Y. helped with the design of some experiments. M.t.B. and F.M.-B. made invaluable reagents. A.K. and J.E. helped with the interpretation of data and writing of the paper. K.M. conceived the experiments, helped with interpretation of data and wrote the paper.

Corresponding author

Correspondence to Ama Gassama-Diagne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 944 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassama-Diagne, A., Yu, W., ter Beest, M. et al. Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8, 963–970 (2006). https://doi.org/10.1038/ncb1461

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1461

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing