Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells

Abstract

Accumulating evidence indicates that hyperactive Wnt signalling occurs in association with the development and progression of human breast cancer. As a consequence of engaging the canonical Wnt pathway, a β-catenin–T-cell factor (TCF) transcriptional complex is generated, which has been postulated to trigger the epithelial–mesenchymal transition (EMT) that characterizes the tissue-invasive phenotype. However, the molecular mechanisms by which the β-catenin–TCF complex induces EMT-like programmes remain undefined. Here, we demonstrate that canonical Wnt signalling engages tumour cell dedifferentiation and tissue-invasive activity through an Axin2-dependent pathway that stabilizes the Snail1 zinc-transcription factor, a key regulator of normal and neoplastic EMT programmes. Axin2 regulates EMT by acting as a nucleocytoplasmic chaperone for GSK3β, the dominant kinase responsible for controlling Snail1 protein turnover and activity. As dysregulated Wnt signalling marks a diverse array of cancerous tissue types, the identification of a β-catenin–TCF-regulated Axin2–GSK3β–Snail1 axis provides new mechanistic insights into cancer-associated EMT programmes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt-mediated induction of β-catenin–TCF–dependent invasion.
Figure 2: Axin2-dependent induction of Snail1-mediated EMT.
Figure 3: Axin2-dependent regulation of GSK3β localization.
Figure 4: Regulation of Axin2 nucleo-cytoplasmic trafficking.
Figure 5: β-cateninS33Y-mediated EMT through the Axin2-dependent regulation of nuclear GSK3β and Snail1 levels.

Similar content being viewed by others

References

  1. Cowin, P., Rowlands, T. M. & Hatsell, S. J. Cadherins and catenins in breast cancer. Curr. Opin. Cell Biol. 17, 499–508 (2005).

    Article  CAS  Google Scholar 

  2. Chu, E. Y. et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development 131, 4819–4829 (2004).

    Article  CAS  Google Scholar 

  3. Reya, T. & Clevers, H. Wnt signaling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  Google Scholar 

  4. Li, Y. et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA 100, 15853–15858 (2003).

    Article  CAS  Google Scholar 

  5. Liu, B. Y., McDermott, S. P., Khwaja, S. S. & Alexander, C. M. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl Acad. Sci. USA 101, 4158–4163 (2004).

    Article  CAS  Google Scholar 

  6. Rowlands, T. M., Pechenkina, I. V., Hatsell, S. J., Pestell, R. G. & Cowin, P. Dissecting the roles of β-catenin and cyclin D1 during mammary development and neoplasia. Proc. Natl Acad. Sci. USA 100, 11400–11405 (2003).

    Article  CAS  Google Scholar 

  7. Bafico, A., Liu, G., Goldin, L., Harris, V. & Aaronson, S. A. An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cell 6, 497–506 (2004).

    Article  CAS  Google Scholar 

  8. Teuliere, J. et al. Targeted activation of β-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 132, 267–277 (2005).

    Article  CAS  Google Scholar 

  9. Ayyanan, A. et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch-dependent mechanism. Proc. Natl Acad. Sci. USA 103, 3799–3804 (2006).

    Article  CAS  Google Scholar 

  10. Kemler, R. et al. Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131, 5817–5824 (2004).

    Article  CAS  Google Scholar 

  11. Jamora, C. et al. A signaling pathway involving TGF-β2 and Snail in hair follicle morphogenesis. PLoS Biol. 3, e11 (2005).

    Article  Google Scholar 

  12. Salahshor, S. & Woodgett, J. R. The links between axin and carcinogenesis. J. Clin. Pathol. 58, 225–236 (2005).

    Article  CAS  Google Scholar 

  13. Carver, E. A., Jiang, R., Lan, Y., Oram, K. F. & Gridley, T. The mouse snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol. Cell Biol. 21, 8184–8188 (2001).

    Article  CAS  Google Scholar 

  14. Zhou, B. P. et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biol. 6, 931–940 (2004).

    Article  CAS  Google Scholar 

  15. Barrallo-Gimeno, A. & Nieto, M. A. The Snail genes as inducers of cell movement and survival: Implications in development and cancer. Development 132, 3151–3161 (2005).

    Article  CAS  Google Scholar 

  16. Moody, S. E. et al. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197–209 (2005).

    Article  CAS  Google Scholar 

  17. Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113, 207–219 (2003).

    Article  CAS  Google Scholar 

  18. Yook, J. I., Li, X. Y., Ota, I., Fearon, E. R. & Weiss, S. J. Wnt-dependent regulation of the E-cadherin repressor Snail. J. Biol. Chem. 280, 11740–11748 (2005).

    Article  CAS  Google Scholar 

  19. Sabeh, F. et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase, MT1–MMP. J. Cell Biol. 167, 769–781 (2004).

    Article  CAS  Google Scholar 

  20. Brabletz, T. et al. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc. Natl Acad. Sci. USA 98, 10356–10361 (2001).

    Article  CAS  Google Scholar 

  21. Kolligs, F. T., Hu, G., Dang, C. V. & Fearon, E. R. Neoplastic transformation of RK3E by mutant β-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol. Cell. Biol. 19, 5696–5706 (1999).

    Article  CAS  Google Scholar 

  22. Stoothoff, W. H., Bailey, C. D. C., Mi, K., Lin, S. C. & Johnson, G. V. W. Axin negatively affects tau phosphorylation by glycogen synthase kinase 3β. J. Neurochem. 83, 904–913 (2002).

    Article  CAS  Google Scholar 

  23. Cong, F. & Varmus, H. Nuclear–cytoplasmic shuttling of Axin regulates subcellular localization of β-catenin. Proc. Natl Acad. Sci. USA 101, 2882–2887 (2004).

    Article  CAS  Google Scholar 

  24. Wiechens, N., Heinle, K., Englmeier, L., Schohl, A. & Fagotto, F. Nucleo-cytoplasmic shuttling of Axin, a negative regulator of the Wnt–β-catenin pathway. J. Biol. Chem. 279, 5263–5267 (2004).

    Article  CAS  Google Scholar 

  25. Chia, I. V. & Costantini, F. Mouse Axin and Axin2/conductin proteins are functionally equivalent in vivo. Mol. Cell Biol. 25, 4371–4376 (2005).

    Article  CAS  Google Scholar 

  26. Salas, T. R. et al. Glycogen synthase kinase-3β is involved in the phosphorylation and suppression of androgen receptor activity. J. Biol. Chem. 279, 19191–19200 (2004).

    Article  CAS  Google Scholar 

  27. Dajani, R. et al. Structural basis for recruitment of glycogen synthase kinase 3β to the axin-APC scaffold complex. EMBO J. 22, 494–501 (2003).

    Article  CAS  Google Scholar 

  28. Jope, R. S. & Johnson, G. V. W. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95–102 (2004).

    Article  CAS  Google Scholar 

  29. Yu, H. M. I. et al. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132, 1995–2005 (2005).

    Article  CAS  Google Scholar 

  30. Franci, C. et al. Expression of Snail protein in tumor–stroma interface. Oncogene 25, 5134–5144 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. I. Jee for technical assistance with mRNA in situ hybridization and immunohistochemical staining. This study was supported by grants from the Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A050550), the Basic Research Program of the Korea Science & Engineering Foundation (R01-2006-10203), the Korea Research Foundation (KRF-2005-005-J05903; J.I.Y.), and National Institutes of Health (NIH) grant 5 R01 CA71699 (S.J.W.).

Author information

Authors and Affiliations

Authors

Contributions

J.I.Y and X.-Y.L. were responsible for overall experimental work and design, I.O. and C.H. for CAM experiments, H.S.K., Y.J.C. and J.K for histochemistry of tissue samples, N.H.K., S.Y.C. and J.K.R. for DNA cloning, and E.R.F and S.J.W. for project planning and data analysis.

Corresponding author

Correspondence to Stephen J. Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 836 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yook, J., Li, XY., Ota, I. et al. A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8, 1398–1406 (2006). https://doi.org/10.1038/ncb1508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1508

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing