Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation

Abstract

The transcription factor Gata-3 is a defining marker of the 'luminal' subtypes of breast cancer1,2,3,4. To gain insight into the role of Gata-3 in breast epithelial development and oncogenesis, we have explored its normal function within the mammary gland by conditionally deleting Gata-3 at different stages of development. We report that Gata-3 has essential roles in the morphogenesis of the mammary gland in both the embryo and adult. Through the discovery of a novel marker (β3-integrin) of luminal progenitor cells and their purification, we demonstrate that Gata-3 deficiency leads to an expansion of luminal progenitors and a concomitant block in differentiation. Remarkably, introduction of Gata-3 into a stem cell-enriched population induced maturation along the alveolar luminal lineage. These studies provide evidence for the existence of an epithelial hierarchy within the mammary gland and establish Gata-3 as a critical regulator of luminal differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gata-3 deficiency results in loss of mammary glands.
Figure 2: Impaired development in MMTV–cre;Gata-3f/f mammary glands.
Figure 3: Impaired development in WAP–cre;Gata-3f/f mammary glands.
Figure 4: CD61 (β3-integrin) is a marker of luminal progenitor cells in the mammary gland.
Figure 5: Expansion of CD61+ progenitor cells in Gata-3-deficient mammary glands and role of Gata-3 in lineage-determination.

Similar content being viewed by others

References

  1. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  2. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA 98, 10869–10874 (2001).

    Article  Google Scholar 

  3. Sørlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  Google Scholar 

  4. Sotiriou, C. et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl Acad. Sci. USA 100, 10393–10398 (2003).

    Article  CAS  Google Scholar 

  5. Hennighausen, L. & Robinson, G. W. Information networks in the mammary gland. Nature Rev. Mol. Cell Biol. 6, 715–725 (2005).

    Article  CAS  Google Scholar 

  6. Shackleton, M. et al. Generation of a functional mammary gland from a single stem cell. Nature 439, 84–88 (2006).

    Article  CAS  Google Scholar 

  7. Stingl, J. et al. Purification and unique properties of mammary epithelial stem cells. Nature 439, 993–997 (2006).

    Article  CAS  Google Scholar 

  8. Pandolfi, P. P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nature Genet. 11, 40–44 (1995).

    Article  CAS  Google Scholar 

  9. Hendriks, R. W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  Google Scholar 

  10. Ting, C. N., Olson, M. C., Barton, K. P. & Leiden, J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  CAS  Google Scholar 

  11. Pai, S. Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  Google Scholar 

  12. van Doorninck, J. H. et al. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12 (1999).

  13. Lim, K. C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nature Genet. 25, 209–212 (2000).

    Article  CAS  Google Scholar 

  14. Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133, 53–61 (2006).

    Article  CAS  Google Scholar 

  15. van der Wees, J. et al. Hearing loss following Gata3 haploinsufficiency is caused by cochlear disorder. Neurobiol. Dis. 16, 169–178 (2004).

    Article  CAS  Google Scholar 

  16. Kaufman, C. K. et al. GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev. 17, 2108–2122 (2003).

    Article  CAS  Google Scholar 

  17. Usary, J. et al. Mutation of GATA3 in human breast tumors. Oncogene 23, 7669–7678 (2004).

    Article  CAS  Google Scholar 

  18. Kurek, D., Garinis, G. A., van Doorninck, J. H., van der Wees, J. & Grosveld, F. G. Transcriptome and phenotypic analysis reveals Gata3-dependent signalling pathways in murine hair follicles. Development DOI: 10.1242/dev.02721 (2006).

  19. Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet. 29, 418–425 (2001).

    Article  CAS  Google Scholar 

  20. Andl, T., Reddy, S. T., Gaddapara, T. & Millar, S. E. WNT signals are required for the initiation of hair follicle development. Dev. Cell 2, 643–653 (2002).

    Article  CAS  Google Scholar 

  21. van Genderen, C. et al. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8, 2691–2703 (1994).

    Article  CAS  Google Scholar 

  22. Wagner, K. U. et al. Cre-mediated gene deletion in the mammary gland. Nucleic Acids Res. 25, 4323–4330 (1997).

    Article  CAS  Google Scholar 

  23. Wagner, K. U. et al. Spatial and temporal expression of the Cre gene under the control of the MMTV–LTR in different lines of transgenic mice. Transgenic Res. 10, 545–553 (2001).

    Article  CAS  Google Scholar 

  24. Tong, Q. et al. Function of GATA transcription factors in preadipocyte–adipocyte transition. Science 290, 134–138 (2000).

    Article  CAS  Google Scholar 

  25. Sleeman, K. E., Kendrick, H., Ashworth, A., Isacke, C. M. & Smalley, M. J. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res. 8, R7 (2006).

    Article  Google Scholar 

  26. Stingl, J., Eaves, C. J., Zandieh, I. & Emerman, J. T. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res. Treat. 67, 93–109 (2001).

    Article  CAS  Google Scholar 

  27. Asselin-Labat, M. L. et al. Steroid hormone receptor status of mouse mammary stem cells. J. Natl Cancer Inst. 98, 1011–1014 (2006).

    Article  CAS  Google Scholar 

  28. Van Esch, H. et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406, 419–422 (2000).

    Article  CAS  Google Scholar 

  29. Patient, R. K. & McGhee, J. D. The GATA family (vertebrates and invertebrates). Curr. Opin. Genet. Dev. 12, 416–422 (2002).

    Article  CAS  Google Scholar 

  30. Hattori, N., Kawamoto, H., Fujimoto, S., Kuno, K. & Katsura, Y. Involvement of transcription factors TCF-1 and GATA-3 in the initiation of the earliest step of T cell development in the thymus. J. Exp. Med. 184, 1137–1147 (1996).

    Article  CAS  Google Scholar 

  31. Sum, E. Y. et al. Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development. Oncogene 24, 4820–4828 (2005).

    Article  CAS  Google Scholar 

  32. Visvader, J. E. et al. The LIM domain gene LMO4 inhibits differentiation of mammary epithelial cells in vitro and is overexpressed in breast cancer. Proc. Natl Acad. Sci. USA 98, 14452–14457 (2001).

    Article  CAS  Google Scholar 

  33. Wilkinson, D. G. ed. In Situ Hybridization. A Practical Approach. (Oxford University Press, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

We are grateful to S. Holroyd and K. Johnson for expert technical assistance, F. Vaillant, J. Adams and K. Lim for discussions, S. Mihajlovic for histology, F. Battye and K. Field for FACS support, K.-U. Wagner and L. Hennighausen for WAP–cre and MMTV–cre transgenic mice, J. Jonkers for K14–cre mice, and H. Clevers for Lef1 plasmid. G.J.L. and J.E.V. are Research Fellows of the National Health and Medical Research Council (NHMRC) of Australia. M.-L.A.-L. is supported by an INSERM/NHMRC Postdoctoral Fellowship. M.S. was supported by a NHMRC Medical Postgraduate Scholarship. This work was supported by the Victorian Breast Cancer Research Consortium (J.E.V and G.J.L).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geoffrey J. Lindeman or Jane E. Visvader.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asselin-Labat, ML., Sutherland, K., Barker, H. et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9, 201–209 (2007). https://doi.org/10.1038/ncb1530

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing