Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis

Abstract

Activating Ras mutations can induce either proliferation or senescence depending on the cellular context. To determine whether Ras activation has context-dependent effects in the mammary gland, we generated doxycycline-inducible transgenic mice that permit Ras activation to be titrated. Low levels of Ras activation — similar to those found in non-transformed mouse tissues expressing endogenous oncogenic Kras2 — stimulate cellular proliferation and mammary epithelial hyperplasias. In contrast, high levels of Ras activation — similar to those found in tumours bearing endogenous Kras2 mutations — induce cellular senescence that is Ink4a–Arf- dependent and irreversible following Ras downregulation. Chronic low-level Ras induction results in tumour formation, but only after the spontaneous upregulation of activated Ras and evasion of senescence checkpoints. Thus, high-level, but not low-level, Ras activation activates tumour suppressor pathways and triggers an irreversible senescent growth arrest in vivo. We suggest a three-stage model for Ras-induced tumorigenesis consisting of an initial activating Ras mutation, overexpression of the activated Ras allele and, finally, evasion of p53–Ink4a–Arf-dependent senescence checkpoints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction and titration of activated Ras in MTB–TRAS mice.
Figure 2: Increasing ductal hyperplasia in response to increasing levels of Ras activation.
Figure 3: High-level, but not low-level, Ras activation results in inhibition of ductal elongation.
Figure 4: High-intensity Ras signalling induces a transient increase in proliferation with subsequent induction of cellular senescence.
Figure 5: The p53 and Ink4a–Arf pathways are required for the dose-specific senescence response to Ras.
Figure 6: Spontaneous upregulation of Ras, inactivation of p53 and escape from senescence accompany Ras-induced tumorigenesis.
Figure 7: Ras-induced inhibition of ductal elongation is reversible and accompanies alterations in oestrogen signaling.
Figure 8: Ras downregulation results in increased apoptosis and resumption of mammary epithelial proliferation, but not reversal of senescence.

Similar content being viewed by others

References

  1. Bos, J. L. ras oncogenes in human cancer: a review. Cancer Research 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  2. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  Google Scholar 

  3. Land, H., Parada, L. F. & Weinberg, R. A. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602 (1983).

    Article  CAS  Google Scholar 

  4. Rangarajan, A., Hong, S. J., Gifford, A. & Weinberg, R. A. Species- and cell type-specific requirements for cellular transformation. Cancer Cell 6, 171–183 (2004).

    Article  CAS  Google Scholar 

  5. Kamijo, T. et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91, 649–659 (1997).

    Article  CAS  Google Scholar 

  6. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  7. Ben-Porath, I. & Weinberg, R. A. When cells get stressed: an integrative view of cellular senescence. J. Clin.l Invest. 113, 8–13 (2004).

    Article  CAS  Google Scholar 

  8. Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma developent. Nature 436, 660–665 (2005).

    Article  CAS  Google Scholar 

  9. Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725–730 (2005).

    Article  CAS  Google Scholar 

  10. Lazzerini Denchi, E., Attwooll, C., Pasini, D. & Helin, K. Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol. Cell Biol. 25, 2660–2672 (2005).

    Article  Google Scholar 

  11. Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720–724 (2005).

    Article  CAS  Google Scholar 

  12. Collado, M. et al. Senescence in premalignant tumors. Nature 436, 642 (2005).

    Article  CAS  Google Scholar 

  13. Guerra, C. et al. Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111–120 (2003).

    Article  CAS  Google Scholar 

  14. Tuveson, D. A. et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375–387 (2004).

    Article  CAS  Google Scholar 

  15. Sewing, A., Wiseman, B., Lloyd, A. C. & Land, H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol. Cell. Biol. 17, 5588–5597 (1997).

    Article  CAS  Google Scholar 

  16. Gunther, E. et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J. 16, 283–292 (2002).

    Article  CAS  Google Scholar 

  17. Hu, Q., Klippel, A., Muslin, A. J., Fantl, W. J. & Williams, L. T. Ras-dependent induction of cellular responses by constitutively active phosphatidylinositol-3 kinase. Science 268, 100–102 (1995).

    Article  CAS  Google Scholar 

  18. Kodaki, T. et al. The activation of phosphatidylinositol 3-kinase by Ras. Curr. Biol. 4, 798–806 (1994).

    Article  CAS  Google Scholar 

  19. Shaulian, E. & Karin, M. AP-1 in cell proliferation and survival. Oncogene 20, 2390–2400 (2001).

    Article  CAS  Google Scholar 

  20. Whitmarsh, A. J. & Davis, R. J. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. 74, 589–607 (1996).

    Article  CAS  Google Scholar 

  21. Wolf, J. S. et al. IL (interleukin)-1α promotes nuclear factor-κB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas. Clin. Cancer Res. 7, 1812–1820 (2001).

    CAS  PubMed  Google Scholar 

  22. D'Cruz, C. M. et al. c-MYC induces mammary tumorigenesis by means of a preferred pathway involving spontaneous Kras2 mutations. Nature Med. 7, 235–239 (2001).

    Article  CAS  Google Scholar 

  23. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001).

    Article  CAS  Google Scholar 

  24. Johnson, L. et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410, 1111–1116 (2001).

    Article  CAS  Google Scholar 

  25. Vitale-Cross, L., Amornphimoltham, P., Fisher, G., Molinolo, A. A. & Gutkind, J. S. Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res. 64, 8804–8807 (2004).

    Article  CAS  Google Scholar 

  26. Palmero, I. & Serrano, M. Induction of senescence by oncogenic Ras. Methods Enzymol. 333, 247–256 (2001).

    Article  CAS  Google Scholar 

  27. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. & Funk, W. D. Microarray analysis of replicative senescence. Curr. Bio.l 9, 939–945 (1999).

    Article  CAS  Google Scholar 

  28. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  Google Scholar 

  29. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  Google Scholar 

  31. Nararita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  Google Scholar 

  32. Ferbeyre, G. et al. Oncogenic ras and p53 cooperate to induce cellular senescence. Mol. Cell. Biol. 22, 3497–3508 (2002).

    Article  CAS  Google Scholar 

  33. Lin, A. W. & Lowe, S. W. Oncogenic ras activates the ARF–p53 pathway to suppress epithelial cell transformation. Proc. Natl Acad. Sci. USA 98, 5025–5030 (2001).

    Article  CAS  Google Scholar 

  34. Schmitt, C. A. et al. A senescence program controlled by p53 and p16(INK4a) contributes to the outcome of cancer therapy. Cell 109, 335–346 (2002).

    Article  CAS  Google Scholar 

  35. Welm, B. E. et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev.l Biol. 245, 42–56 (2002).

    Article  CAS  Google Scholar 

  36. Fujita, M., Kiyono, T., Hayashi, Y. & Ishibashi, M. hCDC47, a human member of the MCM family. Dissociation of the nucleus-bound form during S phase. J. Biol. Chem. 271, 4349–4354 (1996).

    Article  CAS  Google Scholar 

  37. Stoeber, K. et al. DNA replication licensing and human cell proliferation. J. Cell Sci. 114, 2027–2041 (2001).

    CAS  PubMed  Google Scholar 

  38. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    Article  CAS  Google Scholar 

  39. Jang, J. W., Boxer, R. B. & Chodosh, L. A. Isoform-specific ras activation and oncogene dependence during MYC- and Wnt-induced mammary tumorigenesis. Mol. Cell. Biol. 26, 8109–8121 (2006).

    Article  CAS  Google Scholar 

  40. Imagawa, W., Yang, J., Guzman, R. & Nandi, S. in The Physiology of Reproduction (eds. Knobil, E. & Neil, J. D.; Raven Press, New York, 1994).

    Google Scholar 

  41. Finney, R. E. & Bishop, J. M. Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science 260, 1524–1527 (1993).

    Article  CAS  Google Scholar 

  42. Aguirre, A. J. et al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev. 17, 3112–3126 (2003).

    Article  CAS  Google Scholar 

  43. Okamura, M. et al. Gene expression analysis of urethane-induced lung tumors in ras H2 mice. Toxicology 217, 129–138 (2006).

    Article  CAS  Google Scholar 

  44. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986).

    Article  CAS  Google Scholar 

  45. Algarra, I., Perez, M., Serrano, M. J., Garrido, F. & Gaforio, J. J. c-K-ras overexpression is characteristic for metastases derived from a methylcholanthrene-induced fibrosarcoma. Invasion Metastasis 18, 261–70 (1998).

    Article  CAS  Google Scholar 

  46. Bos, J. L. The ras gene family and human carcinogenesis. Mutat. Res. 195, 255–271 (1988).

    Article  CAS  Google Scholar 

  47. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  Google Scholar 

  48. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  CAS  Google Scholar 

  49. Moody, S. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2, 451–461 (2002).

    Article  CAS  Google Scholar 

  50. Stairs, D. B., Notarfrancesco, K. L. & Chodosh, L. A. The serine/threonine kinase, Krct, affects endbud morphogenesis during murine mammary gland development. Transgenic Res. 14, 919–940 (2005).

    Article  CAS  Google Scholar 

  51. Sarkisian, C. J., Master, S. R., Huber, L. J., Ha, S. I. & Chodosh, L. A. Analysis of murine Brca2 reveals conservation of protein-protein interactions but differences in nuclear localization signals. J. Biol. Chem. 276, 37640–37648 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Hahn and M. Coulton for assistance with animal studies, J. Zhou for her assistance with confocal microscopy, and the staff of the University of Pennsylvania John Morgan Animal services unit for housing and care of mice. We also thank D. Tuveson for the use of p48-Cre/LSL-Kras mice and C. Combs for the harvest of pancreata. This work was supported in part by grants CA92910, CA93719, CA98371, and CA105490 from the National Cancer Institute (NCI) as well as U.S. Army Breast Cancer Research Program grants W81XWH-05-1-0405 and DAMD17-00-1-0403 (C.J.S.), and a grant from the Susan G. Komen foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis A. Chodosh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and S6 (PDF 719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkisian, C., Keister, B., Stairs, D. et al. Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9, 493–505 (2007). https://doi.org/10.1038/ncb1567

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing