Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Filopodia are required for cortical neurite initiation

Abstract

Extension of neurites from a cell body is essential to form a functional nervous system; however, the mechanisms underlying neuritogenesis are poorly understood. Ena/VASP proteins regulate actin dynamics and modulate elaboration of cellular protrusions. We recently reported that cortical axon-tract formation is lost in Ena/VASP-null mice and Ena/VASP-null cortical neurons lack filopodia and fail to elaborate neurites. Here, we report that neuritogenesis in Ena/VASP-null neurons can be rescued by restoring filopodia formation through ectopic expression of the actin nucleating protein mDia2. Conversely, wild-type neurons in which filopodia formation is blocked fail to elaborate neurites. We also report that laminin, which promotes the formation of filopodia-like actin-rich protrusions, rescues neuritogenesis in Ena/VASP-deficient neurons. Therefore, filopodia formation is a key prerequisite for neuritogenesis in cortical neurons. Neurite initiation also requires microtubule extension into filopodia, suggesting that interactions between actin-filament bundles and dynamic microtubules within filopodia are crucial for neuritogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Filopodia can dilate to form neurites.
Figure 2: Capping actin filaments in control neurons with cytochalasin D or capping protein inhibits filopodia formation and neuritogenesis.
Figure 3: mDia2 and myosin X expression rescue filopodia and neuritogenesis in mmvvee neurons.
Figure 4: Filopodia are necessary but not sufficient for neuritogenesis.
Figure 5: Filopodia are targeted by dynamic microtubules.
Figure 6: Laminin rescues neurite initiation in mmvvee mutants.
Figure 7: Laminin rescues neuritogenesis through formation of actin-rich filopodia-like extensions.
Figure 8: Myosin II inhibition rescues neuritogenesis through formation of actin-rich filopodium-like extensions.

Similar content being viewed by others

References

  1. Craig, A. M. & Banker, G. Neuronal polarity. Annu. Rev. Neurosci. 17, 267–310 (1994).

    Article  CAS  Google Scholar 

  2. de Lima, A. D., Merten, M. D. & Voigt, T. Neuritic differentiation and synaptogenesis in serum-free neuronal cultures of the rat cerebral cortex. J. Comp. Neurol. 382, 230–246 (1997).

    Article  CAS  Google Scholar 

  3. Dehmelt, L., Smart, F. M., Ozer, R. S. & Halpain, S. The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J. Neurosci. 23, 9479–9490 (2003).

    Article  CAS  Google Scholar 

  4. Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  5. Arimura, N. & Kaibuchi, K. Key regulators in neuronal polarity. Neuron 48, 881–884 (2005).

    Article  CAS  Google Scholar 

  6. Dent, E. W. & Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40, 209–227 (2003).

    Article  CAS  Google Scholar 

  7. Dehmelt, L. & Halpain, S. Actin and microtubules in neurite initiation: are MAPs the missing link? J. Neurobiol. 58, 18–33 (2004).

    Article  CAS  Google Scholar 

  8. Chuang, J. Z. et al. The dynein light chain Tctex-1 has a dynein-independent role in actin remodeling during neurite outgrowth. Dev. Cell 9, 75–86 (2005).

    Article  CAS  Google Scholar 

  9. Caceres, A., Mautino, J. & Kosik, K. S. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9, 607–618 (1992).

    Article  CAS  Google Scholar 

  10. Barzik, M. et al. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J. Biol. Chem. 280, 28653–28662 (2005).

    Article  CAS  Google Scholar 

  11. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    Article  CAS  Google Scholar 

  12. Lebrand, C. et al. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1. Neuron 42, 37–49 (2004).

    Article  CAS  Google Scholar 

  13. Gitai, Z., Yu, T. W., Lundquist, E. A., Tessier-Lavigne, M. & Bargmann, C. I. The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron 37, 53–65 (2003).

    Article  CAS  Google Scholar 

  14. Bashaw, G. J., Kidd, T., Murray, D., Pawson, T. & Goodman, C. S. Repulsive axon guidance: Abelson and Enabled play opposing roles downstream of the roundabout receptor. Cell 101, 703–715 (2000).

    Article  CAS  Google Scholar 

  15. Kwiatkowski, A. V. et al. Ena/VASP is required for neuritogenesis in the developing cortex. Neuron 56, 441–455 (2007).

    Article  CAS  Google Scholar 

  16. Mejillano, M. R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

    Article  CAS  Google Scholar 

  17. Dent, E. W. & Kalil, K. Axon branching requires interactions between dynamic microtubules and actin filaments. J. Neurosci. 21, 9757–9769 (2001).

    Article  CAS  Google Scholar 

  18. Lanier, L. M. et al. Mena is required for neurulation and commissure formation. Neuron 22, 313–325 (1999).

    Article  CAS  Google Scholar 

  19. Goh, K. L., Cai, L., Cepko, C. L. & Gertler, F. B. Ena/VASP proteins regulate cortical neuronal positioning. Curr. Biol. 12, 565–569 (2002).

    Article  CAS  Google Scholar 

  20. Gertler, F. B., Niebuhr, K., Reinhard, M., Wehland, J. & Soriano, P. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Cell 87, 227–239 (1996).

    Article  CAS  Google Scholar 

  21. Gupton, S. L. & Gertler, F. B. Filopodia: the fingers that do the walking. Sci STKE re5 (2007).

  22. Kovar, D. R. Molecular details of formin-mediated actin assembly. Curr. Opin. Cell Biol. 18, 11–17 (2006).

    Article  CAS  Google Scholar 

  23. Pellegrin, S. & Mellor, H. The Rho family GTPase Rif induces filopodia through mDia2. Curr. Biol. 15, 129–133 (2005).

    Article  CAS  Google Scholar 

  24. Peng, J., Wallar, B. J., Flanders, A., Swiatek, P. J. & Alberts, A. S. Disruption of the Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr. Biol. 13, 534–545 (2003).

    Article  CAS  Google Scholar 

  25. Schirenbeck, A., Bretschneider, T., Arasada, R., Schleicher, M. & Faix, J. The Diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nature Cell Biol. 7, 619–625 (2005).

    Article  CAS  Google Scholar 

  26. Wallar, B. J. et al. The basic region of the diaphanous-autoregulatory domain (DAD) is required for autoregulatory interactions with the diaphanous-related formin inhibitory domain. J. Biol. Chem. 281, 4300–4307 (2006).

    Article  CAS  Google Scholar 

  27. Bohil, A. B., Robertson, B. W. & Cheney, R. E. Myosin-X is a molecular motor that functions in filopodia formation. Proc. Natl Acad. Sci. USA 103, 12411–12416 (2006).

    Article  CAS  Google Scholar 

  28. Palazzo, A. F., Cook, T. A., Alberts, A. S. & Gundersen, G. G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723–729 (2001).

    Article  CAS  Google Scholar 

  29. Vasquez, R. J., Howell, B., Yvon, A. M., Wadsworth, P. & Cassimeris, L. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell 8, 973–985 (1997).

    Article  CAS  Google Scholar 

  30. Yvon, A. M., Wadsworth, P. & Jordan, M. A. Taxol suppresses dynamics of individual microtubules in living human tumor cells. Mol. Biol. Cell 10, 947–959 (1999).

    Article  CAS  Google Scholar 

  31. Miner, J. H. & Yurchenco, P. D. Laminin functions in tissue morphogenesis. Annu. Rev. Cell Dev. Biol. 20, 255–284 (2004).

    Article  CAS  Google Scholar 

  32. Indyk, J. A., Chen, Z. L., Tsirka, S. E. & Strickland, S. Laminin chain expression suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded by the tissue plasminogen activator/plasmin protease cascade during excitotoxic injury. Neuroscience 116, 359–371 (2003).

    Article  CAS  Google Scholar 

  33. Mori, S. & Zhang, J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51, 527–539 (2006).

    Article  CAS  Google Scholar 

  34. Menzies, A. S. et al. Mena and vasodilator-stimulated phosphoprotein are required for multiple actin-dependent processes that shape the vertebrate nervous system. J. Neurosci. 24, 8029–8038 (2004).

    Article  CAS  Google Scholar 

  35. Vignjevic, D. et al. Role of fascin in filopodial protrusion. J. Cell Biol. 174, 863–875 (2006).

    Article  CAS  Google Scholar 

  36. Turney, S. G. & Bridgman, P. C. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nature Neurosci. 8, 717–719 (2005).

    Article  CAS  Google Scholar 

  37. Bear, J. E. et al. Negative regulation of fibroblast motility by Ena/VASP proteins. Cell 101, 717–728 (2000).

    Article  CAS  Google Scholar 

  38. Schaefer, A. W., Kabir, N. & Forscher, P. Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones. J. Cell Biol. 158, 139–152 (2002).

    Article  CAS  Google Scholar 

  39. Schirenbeck, A. et al. The bundling activity of vasodilator-stimulated phosphoprotein is required for filopodium formation. Proc. Natl Acad. Sci. USA 103, 7694–7699 (2006).

    Article  CAS  Google Scholar 

  40. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  Google Scholar 

  41. Han, Y. H. et al. Requirement of a vasodilator-stimulated phosphoprotein family member for cell adhesion, the formation of filopodia, and chemotaxis in dictyostelium. J. Biol. Chem. 277, 49877–49887 (2002).

    Article  CAS  Google Scholar 

  42. Schirenbeck, A., Arasada, R., Bretschneider, T., Schleicher, M. & Faix, J. Formins and VASPs may co-operate in the formation of filopodia. Biochem. Soc. Trans. 33, 1256–1259 (2005).

    Article  CAS  Google Scholar 

  43. da Silva, J. S. & Dotti, C. G. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nature Rev. Neurosci. 3, 694–704 (2002).

    Article  CAS  Google Scholar 

  44. Adler, C. E., Fetter, R. D. & Bargmann, C. I. UNC-6/Netrin induces neuronal asymmetry and defines the site of axon formation. Nature Neurosci. 9, 511–518 (2006).

    Article  CAS  Google Scholar 

  45. Chang, C. et al. MIG-10/Lamellipodin and AGE-1/PI3K promote axon guidance and outgrowth in response to slit and netrin. Curr. Biol. 16, 854–862 (2006).

    Article  CAS  Google Scholar 

  46. Dent, E. W., Callaway, J. L., Szebenyi, G., Baas, P. W. & Kalil, K. Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches. J. Neurosci. 19, 8894–8908 (1999).

    Article  CAS  Google Scholar 

  47. Edson, K., Weisshaar, B. & Matus, A. Actin depolymerisation induces process formation on MAP2-transfected non-neuronal cells. Development 117, 689–700 (1993).

    CAS  PubMed  Google Scholar 

  48. Dehmelt, L., Nalbant, P., Steffen, W. & Halpain, S. A microtubule-based, dynein dependent force induces local cell protrusions: Implications for neurite initiation. Brain Cell Biol. 35, 39–56 (2006).

    Article  CAS  Google Scholar 

  49. Osumi, N. & Inoue, T. Gene transfer into cultured mammalian embryos by electroporation. Methods 24, 35–42 (2001).

    Article  CAS  Google Scholar 

  50. Strasser, G. A., Rahim, N. A., VanderWaal, K. E., Gertler, F. B. & Lanier, L. M. Arp2/3 is a negative regulator of growth cone translocation. Neuron 43, 81–94 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank: R. Cheney (UNC Chapel Hill) for EGFP–MyoX and MyoX antibodies; R. Tsien (UC San Diego) for mCherry; R. Makar for generous assistance with the mouse colony and advice; M. Wold and N. Enzer; and E. Pinheiro and K. O'Brien for help during early phases of the work. We appreciate the helpful advice, comments and discussion from all the Gertler lab members. E.W.D. was supported by a National Institutes of Health (NIH) grant (F32-NS45366). A.V.K. was supported by an Anna Fuller Predoctoral Fellowship. S.G. was supported by a Jane Coffin Childs fellowship. U.P. was supported by funds from ICBP (Integrative Cancer Biology Program). D.A.R. was supported by a Ludwig Fellowship. C.F. was supported by NIH grant F32-GM071156. This work was supported by NIH grant GM68678 and funds from the Stanley Medical Research Institute (F.B.G).

Author information

Authors and Affiliations

Authors

Contributions

E.W.D. and F.B.G. conceived the project. E.W.D. performed all of the cell biological experiments and wrote the manuscript with F.B.G. A.V.K. generated the EVL−/− mice and contributed substantively to revising the manuscript. A.V.K and D.A.R. established the mmvvee colony, helped with initial experiments and provided advice and guidance. L.M. executed the platinum-replica electron microscopy. M.B. generated mDia2 subclones and helped in planning all mDia2 experiments. U.P. cloned Mena2+, Mena3+ and Mena3+2+ isoforms and performed RT–PCR on prenatal cortex. J.E.V provided much help with the mouse colony, and J.E.V. and S.G. performed experiments resulting in Supplementary Fig. S7. C.F. generated the capping-protein constructs and provided much advice during the project. A.A. provided mDia2 reagents and advice. J.Z and S.M. performed all μDTI on mmvvee embryos. F.B.G provided advice, overall direction and supervised the execution of the project. All authors read and edited the manuscript.

Corresponding author

Correspondence to Frank B. Gertler.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5 and movie legends (PDF 8516 kb)

Supplementary Information

Supplementary Movie 1 (MOV 5582 kb)

Supplementary Information

Supplementary Movie 2 (MOV 5561 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2954 kb)

Supplementary Information

Supplementary Movie 4 (MOV 8814 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2160 kb)

Supplementary Information

Supplementary Movie 6 (MOV 4374 kb)

Supplementary Information

Supplementary Movie 7 (MOV 5467 kb)

Supplementary Information

Supplementary Movie 8 (MOV 3406 kb)

Supplementary Information

Supplementary Movie 9 (MOV 7464 kb)

Supplementary Information

Supplementary Movie 10 (MOV 2904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dent, E., Kwiatkowski, A., Mebane, L. et al. Filopodia are required for cortical neurite initiation. Nat Cell Biol 9, 1347–1359 (2007). https://doi.org/10.1038/ncb1654

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing