Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts

Abstract

Integrin-mediated adhesion regulates membrane binding sites for Rac1 within lipid rafts. Detachment of cells from the substratum triggers the clearance of rafts from the plasma membrane through caveolin-dependent internalization. The small GTPase Arf6 and microtubules also regulate Rac-dependent cell spreading and migration, but the mechanisms are poorly understood. Here we show that endocytosis of rafts after detachment requires F-actin, followed by microtubule-dependent trafficking to recycling endosomes. When cells are replated on fibronectin, rafts exit from recycling endosomes in an Arf6-dependent manner and return to the plasma membrane along microtubules. Both of these steps are required for the plasma membrane targeting of Rac1 and for its activation. These data therefore define a new membrane raft trafficking pathway that is crucial for anchorage-dependent signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cytoskeleton in raft endocytosis.
Figure 2: Endocytosed rafts do not localize to the Golgi or the SER.
Figure 3: Endocytosed rafts target to recycling endosomes.
Figure 4: Inhibition of Arf6 function.
Figure 5: Adhesion-dependent activation of Arf6 promotes raft exocytosis.
Figure 6: Microtubules in raft exocytosis.
Figure 7: Cell detachment triggers actin-dependent endocytosis of rafts through caveolae.

Similar content being viewed by others

References

  1. del Pozo, M. A. et al. Integrins regulate Rac targeting by internalization of membrane domains. Science 303, 839–842 (2004).

    Article  CAS  Google Scholar 

  2. del Pozo, M. A. et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nature Cell Biol. 7, 901–908 (2005).

    Article  CAS  Google Scholar 

  3. Palazzo, A. F., Eng, C. H., Schlaepfer, D. D., Marcantonio, E. E. & Gundersen, G. G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836–839 (2004).

    Article  CAS  Google Scholar 

  4. Vasanji, A., Ghosh, P. K., Graham, L. M., Eppell, S. J. & Fox, P. L. Polarization of plasma membrane microviscosity during endothelial cell migration. Dev. Cell 6, 29–41 (2004).

    Article  CAS  Google Scholar 

  5. Golub, T. & Pico, C. Spatial control of actin-based motility through plasmalemmal PtdIns(4,5)P2-rich raft assemblies. Biochem. Soc. Symp. 72, 119–127 (2005).

    Article  CAS  Google Scholar 

  6. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  7. Hancock, J. F. Lipid rafts: contentious only from simplistic standpoints. Nature Rev. Mol. Cell Biol. 7, 456–462 (2006).

    Article  CAS  Google Scholar 

  8. Manes, S. et al. Membrane raft microdomains mediate front–rear polarity in migrating cells. EMBO J. 18, 6211–6220 (1999).

    Article  CAS  Google Scholar 

  9. Gaus, K., Le Lay, S., Balasubramanian, N. & Schwartz, M. A. Integrin-mediated adhesion regulates membrane order. J. Cell Biol. 174, 725–734 (2006).

    Article  CAS  Google Scholar 

  10. Donaldson, J. G. Multiple roles for Arf6: sorting, structuring, and signaling at the plasma membrane. J. Biol. Chem. 278, 41573–41576 (2003).

    Article  CAS  Google Scholar 

  11. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nature Rev. Mol. Cell Biol. 7, 347–358 (2006).

    Article  CAS  Google Scholar 

  12. Sabe, H. Requirement for Arf6 in cell adhesion, migration, and cancer cell invasion. J. Biochem. (Tokyo) 134, 485–489 (2003).

    Article  CAS  Google Scholar 

  13. Radhakrishna, H., Al-Awar, O., Khachikian, Z. & Donaldson, J. G. ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J. Cell Sci. 112, 855–866 (1999).

    CAS  PubMed  Google Scholar 

  14. Cheung, H. T. & Terry, D. S. Effects of nocodazole, a new synthetic microtubule inhibitor, on movement and spreading of mouse peritoneal macrophages. Cell Biol. Int. Rep. 4, 1125–1129 (1980).

    Article  CAS  Google Scholar 

  15. Gundersen, G. G. & Bulinski, J. C. Selective stabilization of microtubules oriented toward the direction of cell migration. Proc. Natl Acad. Sci. USA 85, 5946–5950 (1988).

    Article  CAS  Google Scholar 

  16. Krendel, M., Zenke, F. T. & Bokoch, G. M. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nature Cell Biol. 4, 294–301 (2002).

    Article  CAS  Google Scholar 

  17. Le, P. U. & Nabi, I. R. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J. Cell Sci. 116, 1059–1071 (2003).

    Article  CAS  Google Scholar 

  18. Prigozhina, N. L. & Waterman-Storer, C. M. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr. Biol. 14, 88–98 (2004).

    Article  CAS  Google Scholar 

  19. Presley, J. F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  Google Scholar 

  20. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    Article  CAS  Google Scholar 

  21. Sabharanjak, S., Sharma, P., Parton, R. G. & Mayor, S. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2, 411–423 (2002).

    Article  CAS  Google Scholar 

  22. Ullrich, O., Reinsch, S., Urbe, S., Zerial, M. & Parton, R. G. Rab11 regulates recycling through the pericentriolar recycling endosome. J. Cell Biol. 135, 913–924 (1996).

    Article  CAS  Google Scholar 

  23. Yamashiro, D. J. & Maxfield, F. R. Acidification of endocytic compartments and the intracellular pathways of ligands and receptors. J. Cell Biochem. 26, 231–246 (1984).

    Article  CAS  Google Scholar 

  24. Weigert, R., Yeung, A. C., Li, J. & Donaldson, J. G. Rab22a regulates the recycling of membrane proteins internalized independently of clathrin. Mol. Biol. Cell 15, 3758–3770 (2004).

    Article  CAS  Google Scholar 

  25. D'Souza-Schorey, C. & Chavrier, P. ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J. Cell Biol. 140, 603–616 (1998).

    Article  CAS  Google Scholar 

  26. Zhang, Q., Calafat, J., Janssen, H. & Greenberg, S. ARF6 is required for growth factor- and rac-mediated membrane ruffling in macrophages at a stage distal to rac membrane targeting. Mol. Cell. Biol. 19, 8158–8168 (1999).

    Article  CAS  Google Scholar 

  27. Song, J., Khachikian, Z., Radhakrishna, H. & Donaldson, J. G. Localization of endogenous ARF6 to sites of cortical actin rearrangement and involvement of ARF6 in cell spreading. J. Cell Sci. 111, 2257–2267 (1998).

    CAS  PubMed  Google Scholar 

  28. Price, L. S., Leng, J., Schwartz, M. A. & Bokoch, G. M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9, 1863–1871 (1998).

    Article  CAS  Google Scholar 

  29. del Pozo, M. A., Price, L. S., Alderson, N. B., Ren, X. D. & Schwartz, M. A. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. EMBO J. 19, 2008–2014 (2000).

    Article  CAS  Google Scholar 

  30. Santy, L. C. & Casanova, J. E. Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J. Cell Biol. 154, 599–610 (2001).

    Article  CAS  Google Scholar 

  31. Goldfinger, L. E., Ptak, C., Jeffery, E. D., Shabanowitz, J., Hunt, D. F., Ginsberg, M. H. RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. J. Cell Biol. 174, 877–888 (2006).

    Article  CAS  Google Scholar 

  32. Santy, L. C. Characterization of a fast cycling ADP-ribosylation factor 6 mutant. J. Biol. Chem. 277, 40185–40188 (2002).

    Article  CAS  Google Scholar 

  33. Schmoranzer, J., Kreitzer, G. & Simon, S. M. Migrating fibroblasts perform polarized, microtubule-dependent exocytosis towards the leading edge. J. Cell Sci. 116, 4513–4519 (2003).

    Article  CAS  Google Scholar 

  34. Ren, Y., Li, R., Zheng, Y. & Busch, H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J. Biol. Chem. 273, 34954–34960 (1998).

    Article  CAS  Google Scholar 

  35. Kawasaki, Y. et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289, 1194–1197 (2000).

    Article  CAS  Google Scholar 

  36. Torgersen, M. L., Skretting, G., van Deurs, B. & Sandvig, K. Internalization of cholera toxin by different endocytic mechanisms. J. Cell Sci. 114, 3737–3747 (2001).

    CAS  PubMed  Google Scholar 

  37. Nabi, I. R. & Le, P. U. Caveolae/raft-dependent endocytosis. J. Cell Biol. 161, 673–677 (2003).

    Article  CAS  Google Scholar 

  38. Nichols, B. J. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nature Cell Biol. 4, 374–378 (2002).

    Article  CAS  Google Scholar 

  39. Caroni, P. New EMBO members' review: actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. EMBO J. 20, 4332–4336 (2001).

    Article  CAS  Google Scholar 

  40. Pletjushkina, O. J. et al. Induction of cortical oscillations in spreading cells by depolymerization of microtubules. Cell Motil. Cytoskel. 48, 235–244 (2001).

    Article  CAS  Google Scholar 

  41. Rosania, G. R. & Swanson, J. A. Microtubules can modulate pseudopod activity from a distance inside macrophages. Cell Motil. Cytoskel. 34, 230–245 (1996).

    Article  CAS  Google Scholar 

  42. Grande-Garcia, A. et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J. Cell Biol. 177, 683–694 (2007).

    Article  CAS  Google Scholar 

  43. Etienne-Manneville, S. Actin and microtubules in cell motility: which one is in control? Traffic 5, 470–477 (2004).

    Article  CAS  Google Scholar 

  44. Moissoglu, K., Slepchenko, B. M., Meller, N., Horwitz, A. F. & Schwartz, M. A. In vivo dynamics of Rac–membrane interactions. Mol. Biol. Cell 17, 2770–2779 (2006).

    Article  CAS  Google Scholar 

  45. Santy, L. C., Ravichandran, K. S. & Casanova, J. E. The DOCK180/Elmo complex couples ARNO-mediated Arf6 activation to the downstream activation of Rac1. Curr. Biol. 15, 1749–1754 (2005).

    Article  CAS  Google Scholar 

  46. Cotton, M. et al. Endogenous ARF6 interacts with Rac1 upon angiotensin II stimulation to regulate membrane ruffling and cell migration. Mol. Biol. Cell 18, 501–511 (2007).

    Article  CAS  Google Scholar 

  47. Prag, S. et al. Activated ezrin promotes cell migration through recruitment of the GEF Dbl to lipid rafts and preferential downstream activation of Cdc42. Mol. Biol. Cell 18, 2935–2948 (2007).

    Article  CAS  Google Scholar 

  48. Ren, M. et al. Hydrolysis of GTP on rab11 is required for the direct delivery of transferrin from the pericentriolar recycling compartment to the cell surface but not from sorting endosomes. Proc. Natl Acad. Sci. USA 95, 6187–6192 (1998).

    Article  CAS  Google Scholar 

  49. Choi, S. et al. ARF6 and EFA6A regulate the development and maintenance of dendritic spines. J. Neurosci. 26, 4811–4819 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Robert Nabi (University of British Colombia, Vancouver, Canada) for generously providing anti-AMF antibody; Richard Kahn (Emory University School of Medicine, Atlanta GA) for antibodies to Arfs 1, 3, 4 and 5; Jennifer Lippincott-Schwartz (NICHHD, NIH, Bethesda, MD) for VSVG-GEP; and Vivek Malhotra (University of California, San Diego, CA) for PKD constructs. Anti-tubulin antibody was obtained from the Developmental Studies Hybridoma Bank. This work was supported by a US Public Health Service grant RO1 GM47214 to M.A.S.

Author information

Authors and Affiliations

Authors

Contributions

N.B. designed and carried out experiments, analysed data and wrote the manuscript. D.W.S. carried out experiments. J.D.C. and J.E.C. provided reagents and advice. M.A.S. designed experiments, analysed data and wrote the manuscript.

Corresponding author

Correspondence to Martin Alexander Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6 and S7 (PDF 3618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, N., Scott, D., Castle, J. et al. Arf6 and microtubules in adhesion-dependent trafficking of lipid rafts. Nat Cell Biol 9, 1381–1391 (2007). https://doi.org/10.1038/ncb1657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing