Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells

Abstract

Changes in phosphorylation of the carboxy-terminal domain (CTD) of RNA polymerase II (RNAP) are associated with transcription initiation, elongation and termination1,2,3. Sites of active transcription are generally characterized by hyperphosphorylated RNAP, particularly at Ser 2 residues, whereas inactive or poised genes may lack RNAP or may bind Ser 5-phosphorylated RNAP at promoter proximal regions. Recent studies have demonstrated that silent developmental regulator genes have an unusual histone modification profile in ES cells, being simultaneously marked with Polycomb repressor-mediated histone H3K27 methylation, and marks normally associated with gene activity4,5. Contrary to the prevailing view, we show here that this important subset of developmental regulator genes, termed bivalent genes, assemble RNAP complexes phosphorylated on Ser 5 and are transcribed at low levels. We provide evidence that this poised RNAP configuration is enforced by Polycomb Repressor Complex (PRC)-mediated ubiquitination of H2A, as conditional deletion of Ring1A and Ring1B leads to the sequential loss of ubiquitination of H2A, release of poised RNAP, and subsequent gene de-repression. These observations provide an insight into the molecular mechanisms that allow ES cells to self-renew and yet retain the ability to generate multiple lineage outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Poised RNAP phosphorylated on Ser 5 marks bivalent genes in ES cells.
Figure 2: Mapping the binding of transcription machinery and Polycomb repressor components at bivalent chromatin domains in the Nkx2.2 locus in ES cells.
Figure 3: Bivalent genes are transcribed at low level in ES cells.
Figure 4: Conditional removal of Ring1B results in a rapid decline in global levels of mono-ubiquitinated H2A and selective de-repression of bivalent genes in ES cells.
Figure 5: Loss of H2Aub1 results in changes in RNAP conformation at bivalent genes in ES cells.

Similar content being viewed by others

References

  1. Buratowski, S. The CTD code. Nature Struct. Biol. 10, 679–680 (2003).

    Article  CAS  Google Scholar 

  2. Phatnani, H. P. & Greenleaf, A. L. Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936 (2006).

    Article  CAS  Google Scholar 

  3. Saunders, A., Core, L. J. & Lis, J. T. Breaking the barriers to transcription elongation. Nature Rev. Mol. Cell Biol. 7, 557–567 (2006).

    Article  CAS  Google Scholar 

  4. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).

    Article  CAS  Google Scholar 

  5. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  Google Scholar 

  6. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  7. Jørgensen, H. F. et al. Stem cells primed for action: polycomb repressive complexes restrain the expression of lineage-specific regulators in embryonic stem cells. Cell Cycle 5, 1411–1414 (2006).

    Article  Google Scholar 

  8. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  Google Scholar 

  9. Spivakov, M. & Fisher, A. G. Epigenetic signatures of stem-cell identity. Nature Rev. Genet. 8, 263–271 (2007).

    Article  CAS  Google Scholar 

  10. Bracken, A. P. et al. The Polycomb group proteins bind throughout the INK4A-ARF locus and are dissociated in senescent cells. Genes Dev. 21, 525–530 (2007).

    Article  CAS  Google Scholar 

  11. Squazzo, S. L. et al. Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res. 16, 890–900 (2006).

    Article  CAS  Google Scholar 

  12. Guenther, M. G., Levine, S. S., Boyer, L. A., Jaenisch, R. & Young, R. A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell 13, 77–88 (2007).

    Article  Google Scholar 

  13. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  Google Scholar 

  14. Boehm, A. K., Saunders, A., Werner, J. & Lis, J. T. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol. Cell. Biol. 23, 7628–7637 (2003).

    Article  CAS  Google Scholar 

  15. Espinosa, J. M., Verdun, R. E. & Emerson, B. M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell 12, 1015–1027 (2003).

    Article  CAS  Google Scholar 

  16. Spilianakis, C. et al. CIITA regulates transcription onset via Ser 5-phosphorylation of RNA Pol II. EMBO J. 22, 5125–5136 (2003).

    Article  CAS  Google Scholar 

  17. Xie, S. Q., Martin, S., Guillot, P. V., Bentley, D. L. & Pombo, A. Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine 2 residues of the C-terminal domain. Mol. Biol. Cell 17, 1723–1733 (2006).

    Article  CAS  Google Scholar 

  18. Chao, S. H. & Price, D. H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J. Biol. Chem. 276, 31793–31799 (2001).

    Article  CAS  Google Scholar 

  19. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  Google Scholar 

  20. Stamataki, D., Ulloa, F., Tsoni, S. V., Mynett, A. & Briscoe, J. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in the neural tube. Genes Dev. 19, 626–641 (2005).

    Article  CAS  Google Scholar 

  21. Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    Article  CAS  Google Scholar 

  22. Kuzmichev, A., Nishioka, K., Erdjument-Bromage, H., Tempst, P. & Reinberg, D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 16, 2893–2905 (2002).

    Article  CAS  Google Scholar 

  23. de Napoles, M. et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev. Cell 7, 663–676 (2004).

    Article  CAS  Google Scholar 

  24. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  Google Scholar 

  25. Cao, R., Tsukada, Y. & Zhang, Y. Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol. Cell 20, 845–854 (2005).

    Article  CAS  Google Scholar 

  26. Hernandez-Munoz, I., Taghavi, P., Kuijl, C., Neefjes, J. & van Lohuizen, M. Association of BMI1 with polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA methyltransferase DNMT1. Mol. Cell. Biol. 25, 11047–11058 (2005).

    Article  CAS  Google Scholar 

  27. Breiling, A., Turner, B. M., Bianchi, M. E. & Orlando, V. General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651–655 (2001).

    Article  CAS  Google Scholar 

  28. Dellino, G. I. et al. Polycomb silencing blocks transcription initiation. Mol. Cell 13, 887–893 (2004).

    Article  CAS  Google Scholar 

  29. Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell. Biol. 25, 1804–1820 (2005).

    Article  CAS  Google Scholar 

  30. Sharov, A.A. & Ko, M.S.H. Human ES cell profiling broadens the reach of bivalent domains. Cell Stem Cell 1, 237–238, 2007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Henrietta Szutorisz, Niall Dillon, Miguel R. Branco (CSC) and Stephen Buratowski (Harvard Medical School, Cambridge, MA) for advice establishing the RNAP ChIP, James Briscoe (MRC-NIMR) and Joana Santos (CSC) for help in the design of Nkx2.2 gene analyses and TS cell culture, Austin Smith (Wellcome Trust Centre for Stem Cell Research, Cambridge, UK) for ES-OS25 and ES-ZHBTc4 cells, Janet Rossant (Hospital for Sick Children, Toronto, Canada) for XEN cells, Sanofi-Aventis (Bethesda, MD) for the kind gift of flavopiridol, Francisco Ramirez (London, UK) for the statistical analyses, Zoe Webster (CSC) for assistance with ES cell culture, Matthias Merkenschlager and Sarah Elderkin (CSC) for advice and the Medical Research Council (UK), Genome Network Project and NoE Epigenome for support.

Author information

Authors and Affiliations

Authors

Contributions

M.C. and E.B contributed equally to this work.

Corresponding authors

Correspondence to Amanda G. Fisher or Ana Pombo.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 S7, Supplementry Tables and Methods (PDF 706 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stock, J., Giadrossi, S., Casanova, M. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9, 1428–1435 (2007). https://doi.org/10.1038/ncb1663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1663

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing