Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription

Abstract

The remarkable stability of gene expression in somatic cells is exemplified by the way memory of an active gene state is retained when an endoderm cell nucleus is transplanted to an enucleated egg1. Here we analyse the mechanism of a similar example of epigenetic memory. We find that memory can persist through 24 cell divisions in the absence of transcription and applies to the expression of the myogenic gene MyoD in non-muscle cell lineages of nuclear transplant embryos. We show that memory is not explained by the methylation of promoter DNA. However, we demonstrate that epigenetic memory correlates with the association of histone H3.3 with the MyoD promoter in embryos that display memory but not in those where memory has been lost. The association of a mutated histone H3.3 (H3.3 E4, which lacks the methylatable H3.3 lysine 4) with promoter DNA eliminates memory, indicating a requirement of H3.3 K4 for memory. We also show that overexpression of H3.3 can enhance memory in transplanted nuclei. We therefore conclude that the association of histone H3.3 with the MyoD promoter makes a necessary contribution to this example of memory. Hence, we suggest that epigenetic memory helps to stabilize gene expression in normal development; it might also help to account for the inefficient reprogramming in some transplanted nuclei.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nuclear transfer and epigenetic memory.
Figure 2: Association of HA-tagged histone H3.3 with the epigenetic memory of MyoD.
Figure 3: The E4 mutant of H3.3 suppresses epigenetic memory of MyoD.
Figure 4: H3.3 overexpression and epigenetic memory of other myogenic genes.

Similar content being viewed by others

References

  1. Ng, R. K. & Gurdon, J. B. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl Acad. Sci. USA 102, 1957–1962 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hadorn, E. Problems of determination and transdetermination. Brookhaven Symp. Biol. 18, 148–161 (1965).

    Google Scholar 

  3. Gehring, W. J. in The Genetics and Biology of Drosophila Vol. 2c (eds Ashburner, M. & Wright, T. R. F.) 511–554 (Academic Press, London, 1978).

    Google Scholar 

  4. Kato, K. & Gurdon, J. B. Single-cell transplantation determines the time when Xenopus muscle precursor cells acquire a capacity for autonomous differentiation. Proc. Natl Acad. Sci. USA 90, 1310–1314 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Ringrose, L. & Paro, R. Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu. Rev. Genet. 38, 413–443 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Brock, H. W. & Fisher, C. L. Maintenance of gene expression patterns. Dev. Dyn. 232, 633–655 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Feng, Y. Q. et al. DNA methylation supports intrinsic epigenetic memory in mammalian cells. PLoS Genet. 2, e65 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Humpherys, D. et al. Abnormal gene expression in cloned mice derived from embryonic stem cell and cumulus cell nuclei. Proc. Natl Acad. Sci. USA 99, 12889–12894 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Leibham, D. et al. Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter. Mol. Cell. Biol. 14, 686–699 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brunk, B. P., Goldhamer, D. J. & Emerson, C. P. Jr Regulated demethylation of the myoD distal enhancer during skeletal myogenesis. Dev. Biol. 177, 490–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Ahmad, K. & Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9, 1191–1200 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Chow, C. M. et al. Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep. 6, 354–360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stewart, M. D., Sommerville, J. & Wong, J. Dynamic regulation of histone modifications in Xenopus oocytes through histone exchange. Mol. Cell. Biol. 26, 6890–6901 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McKittrick, E., Gafken, P. R., Ahmad, K. & Henikoff, S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl Acad. Sci. USA 101, 1525–1530 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Pray-Grant, M. G., Daniel, J. A., Schieltz, D., Yates, J. R. 3rd & Grant, P. A. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation. Nature 433, 434–438 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Sims, R. J. 3rd et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  Google Scholar 

  18. Santos-Rosa, H. et al. Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. Mol. Cell 12, 1325–1332 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wysocka, J. et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442, 86–90 (2006).

    Article  CAS  Google Scholar 

  20. Li, H. et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442, 91–95 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hake, S. B. & Allis, C. D. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc. Natl Acad. Sci. USA 103, 6428–6435 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, N., Maurange, C., Ringrose, L. & Paro, R. Suppression of Polycomb group proteins by JNK signalling induces transdetermination in Drosophila imaginal discs. Nature 438, 234–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Henikoff, S., Furuyama, T. & Ahmad, K. Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet. 20, 320–326 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Briggs, R. & King, T. J. Changes in the nuclei of differentiating endoderm cells as revealed by nuclear transplantation. J. Morph. 100, 269–312 (1957).

    Article  Google Scholar 

  25. Gurdon, J. B. The developmental capacity of nuclei taken from differentiating endoderm cells of Xenopus laevis . J. Embryol. Exp. Morphol. 8, 505–526 (1960).

    CAS  PubMed  Google Scholar 

  26. Gurdon, J. B. & Byrne, J. A. The first half-century of nuclear transplantation. Proc. Natl Acad. Sci. USA 100, 8048–8052 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gurdon, J. B. Methods for nuclear transplantation in amphibia. Methods Cell Biol. 16, 125–139 (1977).

    Article  CAS  PubMed  Google Scholar 

  28. Zweidler, A. Resolution of histones by polyacrylamide gel electrophoresis in presence of nonionic detergents. Methods Cell Biol. 17, 223–233 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Messenger, N. J. et al. Functional specificity of the Xenopus T-domain protein Brachyury is conferred by its ability to interact with Smad1. Dev. Cell 8, 599–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Jallow, Z., Jacobi, U. G., Weeks, D. L., Dawid, I. B. & Veenstra, G. J. Specialized and redundant roles of TBP and a vertebrate-specific TBP paralog in embryonic gene regulation in Xenopus . Proc. Natl Acad. Sci. USA 101, 13525–13530 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Almouzni, A. Bannister, P. Hurd and W. Reik for valuable discussion, W. Reik for use of the real-time PCR machine, G. Nigel for the construction of E4 mutants, and H. Standley for assistance. This work was funded by the Wellcome Trust and the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Gurdon.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, R., Gurdon, J. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10, 102–109 (2008). https://doi.org/10.1038/ncb1674

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1674

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing