Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation

Abstract

During mitosis, kinetochores form persistent attachments to microtubule tips and undergo corrective detachment in response to phosphorylation by Ipl1 (Aurora B) kinase1. The Dam1 complex is required to establish and maintain bi-oriented attachment to microtubule tips in vivo, and it contains multiple sites phosphorylated by Ipl1 (Refs 2, 3, 4, 5, 6, 7, 8, 9, 10). Moreover, a number of kinetochore-like functions can be reconstituted in vitro with pure Dam1 complex11,12,13,14. These functions are believed to derive from the ability of the complex to self-assemble into rings12,13,15,16,17. Here we show that rings are not necessary for dynamic microtubule attachment, Ipl1-dependent modulation of microtubule affinity or the ability of Dam1 to move processively with disassembling microtubule tips. Using two fluorescence-based assays, we found that the complex exhibited a high affinity for microtubules (Kd of approximately 6 nM) that was reduced by phosphorylation at Ser 20, a single Ipl1 target residue in Dam1. Moreover, individual complexes underwent one-dimensional diffusion along microtubules and detached 2.5-fold more frequently after phosphorylation by Ipl1. Particles consisting of one to four Dam1 complexes — too few to surround a microtubule — were captured and carried by disassembling tips. Thus, even a small number of binding elements could provide a dynamic, phosphoregulated microtubule attachment and thereby facilitate accurate chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification of the GFP-tagged Dam1 Complex.
Figure 2: Phosphorylation of Dam1 Ser 20 by Ipl1 decreases microtubule affinity of the Dam1 complex.
Figure 3: Ipl1 phosphorylation speeds lattice diffusion and decreases the residence time of the Dam1 complex on microtubules.
Figure 4: Single Dam1 complexes are sufficient to form a dynamic microtubule attachment.
Figure 5: Rings are not required for processive disassembly-driven movement of the Dam1 complex.

Similar content being viewed by others

References

  1. Pinsky, B. A., Kotwaliwale, C. V., Tatsutani, S. Y., Breed, C. A. & Biggins, S. Glc7/protein phosphatase 1 regulatory subunits can oppose the Ipl1/aurora protein kinase by redistributing Glc7. Mol. Cell Biol. 26, 2648–2660 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269–281 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Franco, A., Meadows, J. C. & Millar, J. B. The Dam1/DASH complex is required for the retrieval of unclustered kinetochores in fission yeast. J. Cell Sci. 120, 3345–3351 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Cheeseman, I. M., Enquist-Newman, M., Muller-Reichert, T., Drubin, D. G. & Barnes, G. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J. Cell Biol. 152, 197–212 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore–microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Janke, C., Ortiz, J., Tanaka, T. U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones, M. H., He, X., Giddings, T. H. & Winey, M. Yeast Dam1p has a role at the kinetochore in assembly of the mitotic spindle. Proc. Natl Acad. Sci. USA 98, 13675–13680 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheeseman, I.M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Shimogawa, M. M. et al. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr. Biol. 16, 1489–1501 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asbury, C. L., Gestaut, D. R., Powers, A. F., Franck, A. D. & Davis, T. N. The Dam1 kinetochore complex harnesses microtubule dynamics to produce force and movement. Proc. Natl Acad. Sci. USA 103, 9873–9878 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Westermann, S. et al. Formation of a dynamic kinetochore– microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Westermann, S. et al. The Dam1 kinetochore ring complex moves processively on depolymerizing microtubule ends. Nature 440, 565–569 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Franck, A.D. et al. Tension applied through the Dam1 complex promotes microtubule elongation providing a direct mechanism for length control in mitosis. Nature Cell Biol. 9, 832–837 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Miranda, J. J., De Wulf, P., Sorger, P. K. & Harrison, S. C. The yeast DASH complex forms closed rings on microtubules. Nature Struct. Mol. Biol. 12, 138–143 (2005).

    Article  CAS  Google Scholar 

  16. Miranda, J. J., King, D. S. & Harrison, S. C. Protein arms in the kinetochore–microtubule interface of the yeast DASH complex. Mol. Biol. Cell 18, 2503–2510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, H.W. et al. Architecture of the Dam1 kinetochore ring complex and implications for microtubule-driven assembly and force-coupling mechanisms. Nature Struct. Mol. Biol. 14, 721–726 (2007).

    Article  Google Scholar 

  18. Howard, J. & Hyman, A. A. Microtubule polymerases and depolymerases. Curr. Opin. Cell Biol. 19, 31–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Ann. Rev. Biochem. 76, 563–591 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Karp, G. Cell and Molecular Biology, 5th edn (John Wiley & Sons, Hoboken, 2007).

    Google Scholar 

  21. Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. Proc. Natl Acad. Sci. USA 82, 4404–4408 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Koshland, D. E., Mitchison, T. J. & Kirschner, M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature 331, 499–504 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Molodtsov, M. I., Grishchuk, E. L., Efremov, A. K., McIntosh, J. R. & Ataullakhanov, F. I. Force production by depolymerizing microtubules: a theoretical study. Proc. Natl Acad. Sci. US A 102, 4353–4358 (2005).

    Article  CAS  Google Scholar 

  24. Efremov, A., Grishchuk, E. L., McIntosh, J. R. & Ataullakhanov, F. I. In search of an optimal ring to couple microtubule depolymerization to processive chromosome motions. Proc. Natl Acad. Sci. USA 104, 19017–19022 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Dong, Y., Vanden Beldt, K. J., Meng, X., Khodjakov, A. & McEwen, B. F. The outer plate in vertebrate kinetochores is a flexible network with multiple microtubule interactions. Nature Cell Biol. 9, 516–522 (2007).

    Article  PubMed  Google Scholar 

  26. McIntosh, J. R. Rings around kinetochore microtubules in yeast. Nature Struct. Mol. Biol. 12, 210–212 (2005).

    Article  CAS  Google Scholar 

  27. Enquist-Newman, M. et al. Dad1p, third component of the Duo1p/Dam1p complex involved in kinetochore function and mitotic spindle integrity. Mol. Biol. Cell 12, 2601–2613 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheeseman, I.M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry, Vol. I, II and III. (W. H. Freeman & Company, San Francisco; 1980).

    Google Scholar 

  30. McGhee, J. D. & von Hippel, P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–489 (1974).

    Article  CAS  PubMed  Google Scholar 

  31. Pinsky, B. A., Kung, C., Shokat, K. M. & Biggins, S. The Ipl1–Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nature Cell Biol. 8, 78–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Shang, C. et al. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol. Biol. Cell 14, 3342–3355 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Davis, T. N. & Wordeman, L. Rings, bracelets, sleeves, and chevrons: new structures of kinetochore proteins. Trends Cell Biol. 17, 377–382 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gunawardane, R. N., Zheng, Y., Oegema, K. & Wiese, C. Purification and reconstitution of Drosophilia γ-tubulin complexes. in Methods in Cell Biology, Vol. 67 (eds. Palazzo, R. E.& Davis, T. N.) 1–26 (Academic Press, San Diego; 2001).

    Google Scholar 

  36. Press, W. H., Vetterling, W. T., Teukolsky, S. A. & Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing, 2nd edn (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  37. Hill, A. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. 40, iv–vii (1910).

    Google Scholar 

  38. Rice, S. et al. A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. J. Miranda and S. C. Harrison (Harvard Medical School) for providing the expression plasmid for the Dam1 complex and M. Wagenbach for providing MCAK–GFP. We also thank A. Franck, A. Powers, S. Biggins and J. Stumpff for helpful scientific discussion. This work was supported by an NSF IGERT traineeship to J.C., Searle Scholar Award 06-L-111 (to C. L. A.), Packard Fellowship for Science and Engineering No. 2006-30521 (to C. L. A.), and by grants R01GM40506, R01GM79373 and R01GM69429 from the National Institute of General Medical Sciences (to T. N. D., C. L. A. and L. W., respectively)

Author information

Authors and Affiliations

Authors

Contributions

D. R. G., B. G., L. W., C. L. A. and T. N. D. planned the experiments; D. R. G., B. G., J. C., P. O. W., A. Z. and T. N. D. performed the experimental work; D. R. G., B. G., C. L. A. and T. N. D. performed the data analysis; D. R. G., C. L. A. and T. N. D. prepared the manuscript.

Corresponding author

Correspondence to Trisha N. Davis.

Supplementary information

Supplementary Information

Supplementary Figure S1 (PDF 313 kb)

Supplementary Information

Supplementary Movie 1 (MOV 7180 kb)

Supplementary Information

Supplementary Movie 2 (MOV 7046 kb)

Supplementary Information

Supplementary Movie 3 (MOV 6699 kb)

Supplementary Information

Supplementary Movie 4 (MOV 571 kb)

Supplementary Information

Supplementary Movie 5 (MOV 9511 kb)

Supplementary Information

Supplementary Movie 6 (MOV 1978 kb)

Supplementary Information

Supplementary Movie 7 (MOV 5837 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gestaut, D., Graczyk, B., Cooper, J. et al. Phosphoregulation and depolymerization-driven movement of the Dam1 complex do not require ring formation. Nat Cell Biol 10, 407–414 (2008). https://doi.org/10.1038/ncb1702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing