Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The NHL-domain protein Wech is crucial for the integrin–cytoskeleton link

Abstract

Integrin transmembrane receptors mediate cell adhesion through intracellular linker proteins that connect to the cytoskeleton1,2. Of the numerous linker proteins identified, only a few, including Talin and Integrin-linked-kinase (ILK), are essential and evolutionarily conserved. The wech gene encodes a newly discovered and highly conserved regulator of integrin-mediated adhesion in Drosophila melanogaster. Embryos deficient in wech have very similar phenotypes to integrin-null or Talin-null embryos, including muscle detachment from the body wall. The Wech protein contains a B-box zinc-finger and a coiled-coil domain, which is also found in RBCC/TRIM family3 members, and an NHL domain4. In β-integrin or Talin mutants, Wech is mislocalized, whereas ILK localization depends on Wech. We provide evidence that Wech interacts with the head domain of Talin and the kinase domain of ILK, and propose that Wech is required to connect both core proteins of the linker complex during embryonic muscle attachment. Both the NHL and the B-box/coiled-coil domains of Wech are required for proper interaction with Talin and ILK. The single murine Wech orthologue is also colocalized with Talin and ILK in muscle tissue. We propose that Wech proteins are crucial and evolutionarily conserved regulators of the integrin–cytoskeleton link.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the wech mutant phenotype.
Figure 2: Wech localization in the epidermal muscle attachment site.
Figure 3: Wech function in the muscle attachment sites.
Figure 4: Wech interacts with Talin and ILK.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Wiesner, S., Legate, K. R. & Fassler R. Integrin-actin interactions. Cell. Mol. Life Sci. 62, 1081–1099 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Meroni, G. & Diez-Roux, G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. Bioessay 27, 1147–1157 (2005).

    Article  CAS  Google Scholar 

  4. Slack, F. J. & Ruvkun, G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem. Sci. 23, 474–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Brown, N. H., Gregory, S. L. & Martin-Bermudo, M. D. Integrins as mediators of morphogenesis in Drosophila. Dev. Biol. 223, 1–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. De Arcangelis, A. & Georges-Labouesse, E. Integrin and ECM functions: roles in vertebrate development. Trends Genet. 16, 389–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Hannigan, G., Troussard, A. A. & Dedhar, S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nature Rev. Cancer 5, 51–63 (2005).

    Article  CAS  Google Scholar 

  10. Liu, S., Calderwood, D. A. & Ginsberg, M. H. Integrin cytoplasmic domain-binding proteins. J. Cell Sci. 113, 3563–3571 (2000).

    CAS  PubMed  Google Scholar 

  11. Wu, C. PINCH, N(i)ck and the ILK: network wiring at cell-matrix adhesions. Trends Cell Biol. 15, 460–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Brown, N. H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569–579 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Zervas, C. G., Gregory, S. L. & Brown, N. H. Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J. Cell Biol. 152, 1007–1018 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark, K. A., McGrail, M. & Beckerle, M. C. Analysis of PINCH function in Drosophila demonstrates its requirement in integrin-dependent cellular processes. Development 130, 2611–2621 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Torgler, C. N. et al. Tensin stabilizes integrin adhesive contacts in Drosophila. Dev. Cell 6, 357–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheetz, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Tanentzapf, G. & Brown, N. H. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nature Cell Biol. 8, 601–606 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Giannone, G., Jiang, G., Sutton, D. H., Critchley, D. R. & Sheetz, M. P. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163, 409–419 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Volk, T. Singling out Drosophila tendon cells: a dialogue between two distinct cell types. Trends Genet. 15, 448–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Bokel, C. & Brown, N. H. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev. Cell 3, 311–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Gregory, S. L. & Brown, N. H. Kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin. J. Cell Biol. 143, 1271–1282 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paululat, A., Breuer, S. & Renkawitz-Pohl, R. Determination and development of the larval muscle pattern in Drosophila melanogaster. Cell Tissue Res. 296, 151–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Leptin, M., Bogaert, T., Lehmann, R. & Wilcox, M. The function of PS integrins during Drosophila embryogenesis. Cell 56, 401–408 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Roote, C. E. & Zusman, S. Functions for PS integrins in tissue adhesion, migration, and shape changes during early embryonic development in Drosophila. Dev. Biol. 169, 322–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Betschinger, J., Mechtler, K. & Knoblich, J. A. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124, 1241–1253 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Arama, E., Dickman, D., Kimchie, Z., Shearn, A. & Lev, Z. Mutations in the β-propeller domain of the Drosophila brain tumor (brat) protein induce neoplasm in the larval brain. Oncogene 19, 3706–3716 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Bendig, G. et al. Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart. Genes Dev. 20, 2361–2372 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mayer, U. Integrins: redundant or important players in skeletal muscles? J. Biol. Chem. 278, 14587–14590 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Brown and D. Kiehart for sharing fly stocks and reagents, A. Bill for measuring the intensity of the Wech interactions, D. Fürst for discussion of the murine muscle data, T. Magin, I. Zinke and P. Carrera for comments on the manuscript and the members of the Hoch laboratory for helpful discussions. This work was supported by grants from the Deutsche Forschungsgemeinschaft to M. H. and W. K. (SFB 645).

Author information

Authors and Affiliations

Authors

Contributions

B. L. performed all the Drosophila experiments, which were designed together with R. B. and M. H.; W. K. designed the mouse experiments; J. N. characterized the murine Wech 5B7 antibody which was produced by E. K.; R. Bo. performed the sectioning and staining of the murine muscles. All authors discussed the experimental results of the manuscript. M.H. wrote the manuscript.

Corresponding author

Correspondence to Michael Hoch.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and Supplementary Methods (PDF 1142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löer, B., Bauer, R., Bornheim, R. et al. The NHL-domain protein Wech is crucial for the integrin–cytoskeleton link. Nat Cell Biol 10, 422–428 (2008). https://doi.org/10.1038/ncb1704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing