Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer

A Corrigendum to this article was published on 24 December 2012

Abstract

The Notch1 gene has an important role in mammalian cell-fate decision and tumorigenesis. Upstream control mechanisms for transcription of this gene are still poorly understood. In a chemical genetics screen for small molecule activators of Notch signalling, we identified epidermal growth factor receptor (EGFR) as a key negative regulator of Notch1 gene expression in primary human keratinocytes, intact epidermis and skin squamous cell carcinomas (SCCs). The underlying mechanism for negative control of the Notch1 gene in human cells, as well as in a mouse model of EGFR-dependent skin carcinogenesis, involves transcriptional suppression of p53 by the EGFR effector c-Jun. Suppression of Notch signalling in cancer cells counteracts the differentiation-inducing effects of EGFR inhibitors while, at the same time, synergizing with these compounds in induction of apoptosis. Thus, our data reveal a key role of EGFR signalling in the negative regulation of Notch1 gene transcription, of potential relevance for combinatory approaches for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Negative control of Notch1 activity and expression by EGFR/ERK/AP1 signalling.
Figure 2: Suppression of EGFR signalling induces Notch1 expression through p53.
Figure 3: Downregulation of EGFR signalling induces keratinocyte differentiation through a Notch-dependent mechanism.
Figure 4: Suppression of EGFR signalling induces p53 and Notch1 expression in intact mouse and human epidermis.
Figure 5: Differential Notch1 and p53 expression in the EGFR-dependent SOS-mouse skin tumour model with or without c-Jun deletion.
Figure 6: EGFR-dependent regulation of p53 and Notch in cancer cell lines and human squamous cell carcinomas (SCCs).
Figure 7: Enhanced apoptosis in SCCs by concomitant suppression of EGFR and Notch signalling.

Similar content being viewed by others

References

  1. Lefort, K. & Dotto, G. P. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin. Cancer Biol. 14, 374–386 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Lefort, K. et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKα kinases. Genes Dev. 21, 562–577 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  5. Yugawa, T. et al. Regulation of Notch1 gene expression by p53 in epithelial cells. Mol. Cell Biol. 27, 3732–3742 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scaltriti, M. & Baselga, J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res. 12, 5268–5272 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Jost, M., Kari, C. & Rodeck, U. The EGF receptor — an essential regulator of multiple epidermal functions. Eur. J. Dermatol. 10, 505–510 (2000).

    CAS  Google Scholar 

  8. Zenz, R. & Wagner, E. F. Jun signalling in the epidermis: From developmental defects to psoriasis and skin tumors. Int. J. Biochem. Cell Biol. 38, 1043–1049 (2006).

    Article  CAS  Google Scholar 

  9. Kalyankrishna, S. & Grandis, J. R. Epidermal growth factor receptor biology in head and neck cancer. J. Clin. Oncol. 24, 2666–2672 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Citri, A. & Yarden, Y. EGF–ERBB signalling: towards the systems level. Nature Rev. Mol. Cell Biol. 7, 505–516 (2006).

    Article  CAS  Google Scholar 

  11. Lacouture, M. E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Rev. Cancer 6, 803–812 (2006).

    Article  CAS  Google Scholar 

  12. Collins, I. & Workman, P. New approaches to molecular cancer therapeutics. Nature Chem. Biol. 2, 689–700 (2006).

    Article  CAS  Google Scholar 

  13. Gong, Y. et al. Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med. 4, e294 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scholl, F. A., Dumesic, P. A. & Khavari, P. A. Mek1 alters epidermal growth and differentiation. Cancer Res. 64, 6035–6040 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Friday, B. B. & Adjei, A. A. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin. Cancer Res. 14, 342–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Mandinova A. et al. The FoxO3A gene is a key negative target of canonical Notch signaling in the keratinocyte UVB response. EMBO J. 27, 1243–1254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laptenko, O. & Prives, C. Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ. 13, 951–961 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Boggs, K. & Reisman, D. C/EBPβ participates in regulating transcription of the p53 gene in response to mitogen stimulation. J. Biol. Chem. 282, 7982–7990 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Bruno, T. et al. Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell 10, 473–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Phan, R. T. & Dalla-Favera, R. The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Schreiber, M. et al. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev. 13, 607–619 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weng, A. P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell. Biol. 23, 655–664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miele, L., Miao, H. & Nickoloff, B. J. NOTCH signaling as a novel cancer therapeutic target. Curr. Cancer Drug Targets 6, 313–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Hasson, P. et al. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nature Genet. 37, 101–105 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Schad K. et al. Continuous MEK inhibition by AZD6244 (ARRY-142886) results in exhaustion of the cutaneous keratinocytic stem cell pool and resembles senescence driven skin aging. J. Clin. Oncol. 26, (May 20 suppl.) abstr 9075 (2008).

    Article  Google Scholar 

  28. Sibilia, M. et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 102, 211–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Zenz, R. et al. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev. Cell 4, 879–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Hodge, D. R. et al. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res. 65, 4673–4682 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Kang, J. H. et al. Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab. Invest. 81, 573–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Raman, V. et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405, 974–978 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Stuart, E. T., Haffner, R., Oren, M. & Gruss, P. Loss of p53 function through PAX-mediated transcriptional repression. EMBO J. 14, 5638–5645 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cragg, M. S., Kuroda, J., Puthalakath, H., Huang, D. C. & Strasser, A. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 4, 1681–1689 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Dotto, G. P. Signal transduction pathways controlling the switch between keratinocyte growth and differentiation. Crit. Rev. Oral Biol. Med. 10, 442–457 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Doroquez, D. B. & Rebay, I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit. Rev. Biochem. Mol. Biol. 41, 339–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Tergaonkar, V. & Perkins, N. D. p53 and NF-κB crosstalk: IKKα tips the balance. Mol. Cell 26, 158–159 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen, B. C. et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 20, 1028–1042 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dajee, M. et al. NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421, 639–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Eferl, R. & Wagner, E. F. AP-1: a double-edged sword in tumorigenesis. Nature Rev. Cancer 3, 859–868 (2003).

    Article  CAS  Google Scholar 

  41. Reuter, C. W., Morgan, M. A. & Eckardt, A. Targeting EGF-receptor-signalling in squamous cell carcinomas of the head and neck. Br. J. Cancer 96, 408–416 (2007).

    Article  CAS  Google Scholar 

  42. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Musti, A. M., Treier, M. & Bohmann, D. Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275, 400–402 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Luetteke, N. C. et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev. 8, 399–413 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Follen and C. Shamu of the Harvard Institute for Chemistry and Cell Biology, and N. Tolliday from the Broad Institute (Harvard/MIT, Cambridge, MA) for assistance with screening; W. Austen (Massachusetts General Hospital, Boston, MA) and W. Raffoul (University of Lausanne) for human skin material; N. Gaiano (John Hopkins University, Baltimore, MD) for the Notch reporter GFP mice (TNR); R. Zenz for mouse skin tumour samples; Vikram Rajashakera for technical help, and C. Brisken and C. Missero for careful reading of the manuscript. This work was supported by NIH Grants AR39190, AR 054856, the Swiss National Foundation, a grant from the European Union (Epistem, Sixth Framework Program, LSHB-CT-2005-019067) and, in part, by the Cutaneous Biology Research Center through the Massachusetts General Hospital/Shiseido Co. Agreement.

Author information

Authors and Affiliations

Authors

Contributions

V.K., A.M. and G.P.D. designed the experiments and wrote the manuscript; V.K., A.M., J.G.-V., B.H., K.L., C.L., performed the experiments; V.N., R.D. and E.F.W. provided unique sample material and conceptual insights.

Corresponding author

Correspondence to G. Paolo Dotto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7 and Supplementary Tables S1, S2 and S3 (PDF 1110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolev, V., Mandinova, A., Guinea-Viniegra, J. et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol 10, 902–911 (2008). https://doi.org/10.1038/ncb1750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing