Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5

Abstract

Mouse ES cells can differentiate into all three germ layers of the embryo but are generally excluded from the trophoblast lineage. Here we show that ES cells deficient in DNA methylation can differentiate efficiently into trophoblast derivatives. In a genome-wide screen we identified the transcription factor Elf5 as methylated and repressed in ES cells, and hypomethylated and expressed in TS and methylation-deficient ES cells. Elf5 creates a positive-feedback loop with the TS cell determinants Cdx2 and Eomes that is restricted to the trophoblast lineage by epigenetic regulation of Elf5. Importantly, the late-acting function of Elf5 allows initial plasticity and regulation in the early blastocyst. Thus, Elf5 functions as a gatekeeper, downstream of initial lineage determination, to reinforce commitment to the trophoblast lineage or to abort this pathway in epiblast cells. This epigenetic restriction of cell lineage fate provides a molecular mechanism for Waddington's concept of canalization of developmental pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dnmt1-deficiency enables trophoblast differentiation from cells committed to the embryonic cell lineage.
Figure 2: Trophoblast differentiation is induced in wild-type ES cells upon inhibition of DNA methylation and is independent of Oct4 downregulation.
Figure 3: Dnmt1−/− ES cells transdifferentiate into functional trophoblast derivatives.
Figure 4: Global promoter methylation screen identifies Elf5 as the key gene that is methylated in ES cells and unmethylated in TS cells.
Figure 5: Elf5 is a TS cell transcription factor specific for proliferative trophoblasts.
Figure 6: Epigenetically controlled Elf5 expression acts in a positive-feedback loop to reinforce trophoblast identity.
Figure 7: Gatekeeper function of Elf5 in cell lineage specification.

Similar content being viewed by others

References

  1. Gardner, R. L. Clonal analysis of early mammalian development. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 312, 163–178 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Dyce, J., George, M., Goodall, H. & Fleming, T. P. Do trophectoderm and inner cell mass cells in the mouse blastocyst maintain discrete lineages? Development 100, 685–698 (1987).

    CAS  PubMed  Google Scholar 

  3. Fleming, T. P. A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev. Biol. 119, 520–531 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Johnson, M. H. & McConnell, J. M. Lineage allocation and cell polarity during mouse embryogenesis. Semin. Cell Dev. Biol. 15, 583–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bradley, A. & Robertson, E. Embryo-derived stem cells: a tool for elucidating the developmental genetics of the mouse. Curr. Top. Dev. Biol. 20, 357–371 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Bradley, A., Evans, M., Kaufman, M. H. & Robertson, E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255–256 (1984).

    Article  CAS  Google Scholar 

  7. Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989).

    CAS  PubMed  Google Scholar 

  8. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072–2075 (1998).

    Article  CAS  Google Scholar 

  9. Uy, G. D., Downs, K. M. & Gardner, R. L. Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development 129, 3913–3924 (2002).

    CAS  PubMed  Google Scholar 

  10. Rossant, J. Stem cells and lineage development in the mammalian blastocyst. Reprod. Fertil. Dev. 19, 111–118 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447, 425–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Chapman, V., Forrester, L., Sanford, J., Hastie, N. & Rossant, J. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307, 284–286 (1984).

    Article  CAS  PubMed  Google Scholar 

  14. Rossant, J., Sanford, J. P., Chapman, V. M. & Andrews, G. K. Undermethylation of structural gene sequences in extraembryonic lineages of the mouse. Dev. Biol. 117, 567–573 (1986).

    Article  CAS  PubMed  Google Scholar 

  15. Jackson, M. et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol. Cell Biol. 24, 8862–8871 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ciruna, B. G. & Rossant, J. Expression of the T-box gene Eomesodermin during early mouse development. Mech. Dev. 81, 199–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Haffner-Krausz, R., Gorivodsky, M., Chen, Y. & Lonai, P. Expression of Fgfr2 in the early mouse embryo indicates its involvement in preimplantation development. Mech. Dev. 85, 167–172 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Dietrich, J. E. & Hiiragi, T. Stochastic patterning in the mouse pre-implantation embryo. Development 134, 4219–4231 (2007).

    Article  CAS  Google Scholar 

  20. Weber, M. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet. 39, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Donnison, M. et al. Loss of the extra-embryonic ectoderm in Elf5 mutants leads to defects in embryonic patterning. Development 132, 2299–2308 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Sharif, J. et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, T., Ueda, Y., Dodge, J. E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell Biol. 23, 5594–5605 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carlone, D. L. et al. Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol. Cell Biol. 25, 4881–4891 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Choi, Y. S. & Sinha, S. Determination of the consensus DNA-binding sequence and a transcriptional activation domain for ESE-2. Biochem. J. 398, 497–507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Azuara, V. et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biol. 8, 532–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  Google Scholar 

  28. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Metzger, D. E., Xu, Y. & Shannon, J. M. Elf5 is an epithelium-specific, fibroblast growth factor-sensitive transcription factor in the embryonic lung. Dev. Dyn. 236, 1175–1192 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 123, 917–929 (2005).

    Article  CAS  Google Scholar 

  32. Farthing, C. R. et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet. 4, e1000116 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).

    Article  CAS  Google Scholar 

  35. Russ, A. P. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Rossant, J. & Lis, W. T. Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev. Biol. 70, 255–261 (1979).

    Article  CAS  PubMed  Google Scholar 

  37. Rossant, J. & Vijh, K. M. Ability of outside cells from preimplantation mouse embryos to form inner cell mass derivatives. Dev. Biol. 76, 475–482 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. Zernicka-Goetz, M. The first cell-fate decisions in the mouse embryo: destiny is a matter of both chance and choice. Curr. Opin. Genet. Dev. 16, 406–412 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Yamanaka, Y., Ralston, A., Stephenson, R. O. & Rossant, J. Cell and molecular regulation of the mouse blastocyst. Dev. Dyn. 235, 2301–2314 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Waddington, C. H. Organisers and Genes (Cambridge University Press, Cambridge, 1940).

    Google Scholar 

  41. Lei, H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205 (1996).

    CAS  PubMed  Google Scholar 

  42. Lobe, C. G. et al. Z/AP, a double reporter for cre-mediated recombination. Dev. Biol. 208, 281–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Hemberger, M., Nozaki, T., Masutani, M. & Cross, J. C. Differential expression of angiogenic and vasodilatory factors by invasive trophoblast giant cells depending on depth of invasion. Dev. Dyn. 227, 185–191 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Hemberger, M., Hughes, M. & Cross, J. C. Trophoblast stem cells differentiate in vitro into invasive trophoblast giant cells. Dev. Biol. 271, 362–371 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, 3rd edn, (Cold Spring Harbor Press, 2001).

    Google Scholar 

  46. Lewis, A. et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nature Genet. 36, 1291–1295 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Fatima Santos and Annabelle Lewis for expert help with confocal microscopy and qPCR design, respectively. We also thank En Li for Dnmt1 mice and ES cells, and Haruhiko Koseki, Nick Gilbert and David Skalnik for ES cell lines. This work was supported by an MRC Career Development Award to M.H., by the Croucher Foundation Fellowship to R.K.N., and by BBSRC, MRC, EU NoE The Epigenome, CellCentric, and DIUS.

Author information

Authors and Affiliations

Authors

Contributions

R.K.N. and M.H. performed the main body of experiments; W.D. performed the chimaera and blastocyst outgrowth experiments; C.D. contributed to the qPCR analysis; D.L. and Z.M. performed parts of the bisulphite sequencing; R.K.N., W.D., W.R. and M.H. analysed and discussed the data and M.H. and W.R. wrote the manuscript.

Corresponding author

Correspondence to Myriam Hemberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1553 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, R., Dean, W., Dawson, C. et al. Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10, 1280–1290 (2008). https://doi.org/10.1038/ncb1786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing