Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase

Abstract

A large number of macrophages and haematopoietic progenitor cells accumulate in pre-metastatic lungs1,2 in which chemoattractants, such as S100A8 and S100A9, are produced by distant primary tumours serving as metastatic soil3. The exact mechanism by which these chemoattractants elicit cell accumulation is not known. Here, we show that serum amyloid A (SAA) 3, which is induced in pre-metastatic lungs by S100A8 and S100A9, has a role in the accumulation of myeloid cells and acts as a positive-feedback regulator for chemoattractant secretion. We also show that in lung endothelial cells and macrophages, Toll-like receptor (TLR) 4 acts as a functional receptor for SAA3 in the pre-metastatic phase. In our study, SAA3 stimulated NF-κB signalling in a TLR4-dependent manner and facilitated metastasis. This inflammation-like state accelerated the migration of primary tumour cells to lung tissues, but this was suppressed by the inhibition of either TLR4 or SAA3. Thus, blocking SAA3–TLR4 function in the pre-metastatic phase could prove to be an effective strategy for the prevention of pulmonary metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of S100A8 and S100A9 on SAA3 gene expression and protein secretion.
Figure 2: SAA3 and SAA3-stimulated LCM induce LLC cell migration.
Figure 3: SAA3 induces TLR4-mediated NF-κB activation.
Figure 4: SAA3-induced cell migration through TLR4 and characterization of neutralizing anti-SAA3 antibody.
Figure 5: Suppression of lung metastasis by TLR4 knockout or anti-SAA3 antibody.

Similar content being viewed by others

References

  1. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated lung metastasis. Nature Cell Biol. 8, 1369–1375 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8, 98–101, (1989).

    CAS  PubMed  Google Scholar 

  5. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nature Rev. Cancer 2, 161–174 (2002).

    Article  CAS  Google Scholar 

  6. Liang, T. S., Wang, J. M., Murphy, P. M. & Gao, J. L. Serum amyloid A is a chemotactic agonist at FPR2, a low-affinity N-formylpeptide receptor on mouse neutrophils. Biochem. Biophys. Res. Commun. 270, 331–335 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. He, R., Sang, H. & Ye, R. D. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood 101, 1572–1581 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Larson, M. A., Wei, S. H., Weber, A., Weber, A. T. & McDonald, T. L. Induction of human mammary-associated serum amyloid A3 expression by prolactin or lipopolysaccharide. Biochem. Biophys. Res. Commun. 301, 1030–1037 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Meek, R. L. & Benditt, E. P. Rat tissues express serum amyloid A protein-related mRNAs. Proc. Natl Acad. Sci. USA 86, 1890–1894 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meek, R. L., Eriksen, N. & Benditt, E. P. Murine serum amyloid A3 is a high density apolipoprotein and is secreted by macrophages. Proc. Natl Acad. Sci. USA 89, 7949–7952 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H. & Liao, W. S. Functional analysis of a minimal mouse serum amyloid A3 promoter in transgenic mice. Amyloid 8, 250–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, Y. et al. Hyperglycemia-induced production of acute phase reactants in adipose tissue. J. Biol. Chem. 276, 42077–42083 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Son, D. S., Roby, K. F. & Terranov, P. F. Tumor necrosis factor induces serum amyloid A3 in mouse granulosa cells. Endocrinology 145, 2245–2252 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, B. et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 65, 5009–5014 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Verghese, M. W. & Snyderman, R. Endotoxin (LPS) stimulates in vitro migration of macrophages from LPS-resistant mice but not from LPS-sensitive mice. J. Immunol. 128, 608–613 (1982).

    CAS  PubMed  Google Scholar 

  16. Beutler, B. Toll-like receptors: how they work and what they do. Curr. Opin. Hematol. 9, 2–10 (2002).

    Article  PubMed  Google Scholar 

  17. Ogawa, T. et al. Cell activation by Porphyromonas gingivalis lipid A molecule through Toll-like receptor 4- and myeloid differentiation factor 88-dependent signaling pathway. Int. Immunol. 14, 1325–1332 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Miyake, K., Yamashita, Y., Ogata, M., Sudo, T. & Kimoto, M. RP105, a novel B cell surface molecule implicated in B cell activation, is a member of the leucine-rich repeat protein family. J. Immunol. 154, 3333–3340 (1995).

    CAS  PubMed  Google Scholar 

  19. Akashi, S. et al. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J. Exp. Med. 198, 1035–1042 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Natue Med. 13, 1042–1049 (2007).

    Article  CAS  Google Scholar 

  21. Akira, S. & Takeda, K. Toll-lke receptor signaling. Nature Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  22. Beutler, B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Vabulas, R. M. et al. HSP70 as endogenous stimulus of the Toll/Interleukin-1 receptor signal pathway. J. Biol. Chem. 277, 15107–15112 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Termeer, C. et al. Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nature Med. 11, 1173–1179 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Smiley, S. T., King, J. A. & Hancock, W. W. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J. Immunol. 167, 2887–2894 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Marx, J. Cancer research. Inflammation and cancer: the link grows stronger. Science 306, 966–968 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Greten, F. R. et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to Lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  PubMed  Google Scholar 

  30. Dong, Q. G. et al. A general strategy for isolation of endothelial cells from murine tissues. Characterization of two endothelial cell lines from the murine lung and subcutaneous sponge implants. Arterioscler. Thromb. Vasc. Biol. 17, 1599–1604 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. E. Scherer for providing the anti-mouse SAA3 antibody and pGEX-SAA3 vector, and T. Noda for preparation of the VEGFR1TK−/− mouse. We are grateful to B. Panda for checking the manuscript and also O. N. Witte for critical reading of manuscript and providing comments. This study was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, 12147210 (Y.M.) and 16101006 (H.A.) the NIBIO program and NFAT project of New Energy and Industrial Technology Development Organization (H.A.) and Uehara foundation (S.H.)

Author information

Authors and Affiliations

Authors

Contributions

S.H., Y.S. mainly contributed to animal studies; A.W. and S.I. contributed to molecular analysis; S.A.T., K.M., M.S. and S.A. supplied animals and materials; Y.M. designed and organized the work; H.A. and Y.M. supervised the work.

Corresponding author

Correspondence to Yoshiro Maru.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1775 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiratsuka, S., Watanabe, A., Sakurai, Y. et al. The S100A8–serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 10, 1349–1355 (2008). https://doi.org/10.1038/ncb1794

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing