Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments

Abstract

Two proteins implicated in inherited deafness, myosin IIIa1, a plus-end-directed motor2, and espin3,4,5,6, an actin-bundling protein containing the actin-monomer-binding motif WH2, have been shown to influence the length of mechanosensory stereocilia7,8. Here we report that espin 1, an ankyrin repeat-containing isoform of espin6, colocalizes with myosin IIIa at stereocilia tips and interacts with a unique conserved domain of myosin IIIa. We show that combined overexpression of these proteins causes greater elongation of stereocilia, compared with overexpression of either myosin IIIa alone or espin 1 alone. When these two proteins were co-expressed in the fibroblast-like COS-7 cell line they induced a tenfold elongation of filopodia. This extraordinary filopodia elongation results from the transport of espin 1 to the plus ends of F-actin by myosin IIIa and depends on espin 1 WH2 activity. This study provides the basis for understanding the role of myosin IIIa and espin 1 in regulating stereocilia length, and presents a physiological example where myosins can boost elongation of actin protrusions by transporting actin regulatory factors to the plus ends of actin filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Espin 1 distribution in stereocilia is similar to myosin IIIa distribution.
Figure 2: Espin 1 alone or when overexpressed with myosin IIIa elongates stereocilia.
Figure 3: Espin 1 interacts with myosin IIIa through its ankyrin repeats domain (ARD) in transfected COS-7 cells.
Figure 4: Myosin IIIa interacts with espin 1 through its 3THDI domain.
Figure 5: Myosin IIIa and espin 1 synergistically elongate filopodia in COS-7 cells through espin 1 WH2 activity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Walsh, T. et al. From flies' eyes to our ears: mutations in a human class III myosin cause progressive non-syndromic hearing loss DFNB30. Proc. Natl Acad. Sci. USA 99, 7518–7523 (2002).

    Article  CAS  Google Scholar 

  2. Komaba, S., Inoue, A., Maruta, S., Hosoya, H. & Ikebe, M. Determination of human myosin III as a motor protein having a protein kinase activity. J. Biol. Chem. 278, 21352–21360 (2003).

    Article  CAS  Google Scholar 

  3. Zheng, L. et al. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102, 377–385 (2000).

    Article  CAS  Google Scholar 

  4. Donaudy, F. et al. Espin gene (ESPN) mutations associated with autosomal dominant hearing loss cause defects in microvillar elongation or organisation. J. Med. Genet. 43, 157–161 (2006).

    Article  CAS  Google Scholar 

  5. Naz, S. et al. Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J. Med. Genet. 41, 591–595 (2004).

    Article  CAS  Google Scholar 

  6. Sekerkova, G., Zheng, L., Loomis, P. A., Mugnaini, E. & Bartles, J. R. Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli. Cell. Mol. Life Sci. 63, 2329–2341 (2006).

    Article  CAS  Google Scholar 

  7. Schneider, M. E. et al. A new compartment at stereocilia tips defined by spatial and temporal patterns of myosin IIIa expression. J. Neurosci. 26, 10243–10252 (2006).

    Article  CAS  Google Scholar 

  8. Rzadzinska, A., Schneider, M., Noben-Trauth, K., Bartles, J. R. & Kachar, B. Balanced levels of Espin are critical for stereociliary growth and length maintenance. Cell. Motil. Cytoskeleton 62, 157–165 (2005).

    Article  CAS  Google Scholar 

  9. Rzadzinska, A. K., Schneider, M. E., Davies, C., Riordan, G. P. & Kachar, B. An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal. J. Cell Biol. 164, 887–897 (2004).

    Article  CAS  Google Scholar 

  10. Lin, H. W., Schneider, M. E. & Kachar, B. When size matters: the dynamic regulation of stereocilia lengths. Curr. Opin. Cell Biol. 17, 55–61 (2005).

    Article  CAS  Google Scholar 

  11. Schneider, M. E., Belyantseva, I. A., Azevedo, R. B. & Kachar, B. Rapid renewal of auditory hair bundles. Nature 418, 837–838 (2002).

    Article  CAS  Google Scholar 

  12. Manor, U. & Kachar, B. Dynamic length regulation of sensory stereocilia. Semin. Cell Dev. Biol. 19, 502–510 (2008).

    Article  Google Scholar 

  13. Belyantseva, I. A. et al. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nature Cell Biol. 7, 148–156 (2005).

    Article  CAS  Google Scholar 

  14. Prosser, H. M., Rzadzinska, A. K., Steel, K. P. & Bradley, A. Mosaic complementation demonstrates a regulatory role for myosin VIIa in actin dynamics of stereocilia. Mol. Cell Biol. 28, 1702–1712 (2008).

    Article  CAS  Google Scholar 

  15. Tokuo, H., Mabuchi, K. & Ikebe, M. The motor activity of myosin-X promotes actin fiber convergence at the cell periphery to initiate filopodia formation. J. Cell Biol. 179, 229–238 (2007).

    Article  CAS  Google Scholar 

  16. Tokuo, H. & Ikebe, M. Myosin X transports Mena/VASP to the tip of filopodia. Biochem. Biophys. Res. Commun. 319, 214–220 (2004).

    Article  CAS  Google Scholar 

  17. Waguespack, J., Salles, F. T., Kachar, B. & Ricci, A. J. Stepwise morphological and functional maturation of mechanotransduction in rat outer hair cells. J. Neurosci. 27, 13890–13902 (2007).

    Article  CAS  Google Scholar 

  18. Les Erickson, F., Corsa, A. C., Dose, A. C. & Burnside, B. Localization of a class III myosin to filopodia tips in transfected HeLa cells requires an actin-binding site in its tail domain. Mol. Biol. Cell 14, 4173–4180 (2003).

    Article  CAS  Google Scholar 

  19. Bohil, A. B., Robertson, B. W. & Cheney, R. E. Myosin-X is a molecular motor that functions in filopodia formation. Proc. Natl Acad. Sci. USA 103, 12411–12416 (2006).

    Article  CAS  Google Scholar 

  20. Dose, A. C. et al. Myo3A, one of two class III myosin genes expressed in vertebrate retina, is localized to the calycal processes of rod and cone photoreceptors and is expressed in the sacculus. Mol. Biol. Cell 14, 1058–1073 (2003).

    Article  CAS  Google Scholar 

  21. Quinlan, M. E., Heuser, J. E., Kerkhoff, E. & Mullins, R. D. Drosophila Spire is an actin nucleation factor. Nature 433, 382–388 (2005).

    Article  CAS  Google Scholar 

  22. Loomis, P. A. et al. Targeted wild-type and jerker espins reveal a novel, WH2-domain-dependent way to make actin bundles in cells. J. Cell Sci. 119, 1655–1665 (2006).

    Article  CAS  Google Scholar 

  23. Naoz, M., Manor, U., Sakaguchi, H., Kachar, B. & Gov, N. Protein localization by actin treadmilling and molecular motors regulates stereocilia shape and treadmilling rate. Biophys. J. (2008).

  24. Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).

    Article  CAS  Google Scholar 

  25. Sakaguchi, H. et al. Dynamic compartmentalization of protein tyrosine phosphatase receptor Q. at the proximal end of stereocilia: Implication of myosin VI-based transport. Cell. Motil. Cytoskeleton (2008).

  26. Dose, A. C. et al. The kinase domain alters the kinetic properties of the myosin IIIA motor. Biochemistry 47, 2485–2496 (2008).

    Article  CAS  Google Scholar 

  27. Kambara, T., Komaba, S. & Ikebe, M. Human myosin III is a motor having an extremely high affinity for actin. J. Biol. Chem. 281, 37291–37301 (2006).

    Article  CAS  Google Scholar 

  28. Ricci, A. J., Kachar, B., Gale, J. & Van Netten, S. M. Mechano-electrical transduction: new insights into old ideas. J. Membr. Biol. 209, 71–88 (2006).

    Article  CAS  Google Scholar 

  29. Porter, J. A., Yu, M., Doberstein, S. K., Pollard, T. D. & Montell, C. Dependence of calmodulin localization in the retina on the NINAC unconventional myosin. Science 262, 1038–1042 (1993).

    Article  CAS  Google Scholar 

  30. Wes, P. D. et al. Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nature Neurosci. 2, 447–453 (1999).

    Article  CAS  Google Scholar 

  31. Mosavi, L. K., Cammett, T. J., Desrosiers, D. C. & Peng, Z. Y. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci. 13, 1435–1448 (2004).

    Article  CAS  Google Scholar 

  32. Dose, A. C., Ananthanarayanan, S., Moore, J. E., Burnside, B. & Yengo, C. M. Kinetic mechanism of human myosin IIIA. J. Biol. Chem. 282, 216–231 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chi W. Pak for discussions and for the suggestion of mutations in the WH2 motif, Mark Schneider and Saeeda Latham for initial help with experiments and for discussions related to this work, Martin Horak for advice on cloning procedures, and Ronald Petralia for comments on the manuscript. This work was supported by NIDCD, DIR, NIH and in part by NIH grants to A.C.D. (no. EY003575) and to C.M.Y. (no. EY016419).

Author information

Authors and Affiliations

Authors

Contributions

R.C.M. designed probes and experiments, performed the GST pulldowns, cell culture, immunocytochemistry and transfections; F.T.S. performed the dissections, cell and organotypic cultures, immunohistochemistry, transfections and confocal imaging; G.W.D. and A.C.D. designed probes, performed transfections and contributed to the experimental design; U.M. performed image and statistical analyses; A.D.S. characterized antibody and DNA probes; C.M.Y. and J.E.M. generated myosin IIIa kinase dead cDNA, purified and performed kinase and motor activity assays; B.K. performed electron microscopy, designed experiments and analysed the results together with all the other authors. All authors discussed and helped to prepare the manuscript.

Corresponding author

Correspondence to Bechara Kachar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1076 kb)

Supplementary Information

Supplementary Movie 1 (MOV 3422 kb)

Supplementary Information

Supplementary Movie 2 (MOV 478 kb)

Supplementary Information

Supplementary Movie 3 (MOV 1209 kb)

Supplementary Information

Supplementary Movie 4 (MOV 3201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salles, F., Merritt, R., Manor, U. et al. Myosin IIIa boosts elongation of stereocilia by transporting espin 1 to the plus ends of actin filaments. Nat Cell Biol 11, 443–450 (2009). https://doi.org/10.1038/ncb1851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing