Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice

Abstract

Mitochondrial morphology is dynamically controlled by a balance between fusion and fission. The physiological importance of mitochondrial fission in vertebrates is less clearly defined than that of mitochondrial fusion. Here we show that mice lacking the mitochondrial fission GTPase Drp1 have developmental abnormalities, particularly in the forebrain, and die after embryonic day 12.5. Neural cell-specific (NS) Drp1−/− mice die shortly after birth as a result of brain hypoplasia with apoptosis. Primary culture of NS-Drp1−/− mouse forebrain showed a decreased number of neurites and defective synapse formation, thought to be due to aggregated mitochondria that failed to distribute properly within the cell processes. These defects were reflected by abnormal forebrain development and highlight the importance of Drp1-dependent mitochondrial fission within highly polarized cells such as neurons. Moreover, Drp1−/− murine embryonic fibroblasts and embryonic stem cells revealed that Drp1 is required for a normal rate of cytochrome c release and caspase activation during apoptosis, although mitochondrial outer membrane permeabilization, as examined by the release of Smac/Diablo and Tim8a, may occur independently of Drp1 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microscopic analysis of Drp1−/− embryos and control littermates.
Figure 2: Morphology and growth phenotypes of Drp1−/− cell lines.
Figure 3: Response of Drp1−/− ES cells and MEFs to proapoptotic reagents.
Figure 4: Brain disintegration in neuron-specific Drp1−/− mice.
Figure 5: Synapse formation is compromised in mixed brain cultures from NS-Drp1−/− mice.

Similar content being viewed by others

References

  1. Okamoto, K. & Shaw, J. M. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503–536 (2005).

    Article  CAS  Google Scholar 

  2. Chan, D. C. Mitochondrial fusion and fission in mammals. Annu. Rev. Dev. Biol. 22, 79–99 (2006).

    Article  CAS  Google Scholar 

  3. McBride, H. M., Neuspiel, M. & Wasiak, S. Mitochondria: more than a powerhouse. Curr. Biol. 16, R551–R560 (2006).

    Article  CAS  Google Scholar 

  4. Gandre-Babbe, S. & van der Bliek, A. M. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412 (2008).

    Article  CAS  Google Scholar 

  5. Delettre, C. et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature Genet. 26, 207–210 (2000).

    Article  CAS  Google Scholar 

  6. Alexander, C. et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature Genet. 26, 211–215 (2000).

    Article  CAS  Google Scholar 

  7. Zuchner, S. et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature Genet. 36, 449–451 (2004).

    Article  Google Scholar 

  8. Chen, H. et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189–200 (2003).

    Article  CAS  Google Scholar 

  9. Chen H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562 (2007).

    Article  CAS  Google Scholar 

  10. Frank, S. et al. The role of dynamin-related protein 1, a mediator mitochondrial fission, in apoptosis. Dev Cell. 1, 515–525 (2001).

    Article  CAS  Google Scholar 

  11. Lee, Y. J., Jeong, S. Y., Karbowski, M., Smith, C. L. & Youle, R. J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001–5011 (2004).

    Article  CAS  Google Scholar 

  12. Suen, D.-F., Norris, K. L. & Youle, R. J. Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577–1590 (2008).

    Article  CAS  Google Scholar 

  13. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  Google Scholar 

  14. Labrousse, A. M., Zappaterra, M. D., Rube, D. A. & van der Bliek, A. M. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815–826 (1999).

    Article  CAS  Google Scholar 

  15. Li, Z., Okamoto, K., Hayashi, Y. & Sheng, M. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873–887 (2004).

    Article  CAS  Google Scholar 

  16. Verstreken, P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 47, 365–378 (2005).

    Article  CAS  Google Scholar 

  17. Arnoult, D. Mitochondrial fragmentation in apoptosis. Trends Cell Biol. 17, 6–12 (2007).

    Article  CAS  Google Scholar 

  18. Martinou, J.-C. & Youle, R. J. Which came first, the cytochrome c release or the mitochondrial fission? Cell Death Differ. 13, 1291–1295 (2006).

    Article  CAS  Google Scholar 

  19. Parone, P. A. et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol. Cell. Biol. 26, 7397–7408 (2006).

    Article  CAS  Google Scholar 

  20. Waterham, H. R. et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736–1741 (2007).

    Article  CAS  Google Scholar 

  21. Koch, A. et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278, 8597–8605 (2003).

    Article  CAS  Google Scholar 

  22. Ishihara, N., Jofuku, A., Eura, Y. & Mihara, K. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem. Biophys. Res. Commun. 301, 891–898 (2003).

    Article  CAS  Google Scholar 

  23. Ishihara, N., Fujita, Y., Oka, T. & Mihara, K. Regulation of mitochondrial morphology through proteolysic cleavage of OPA1. EMBO J. 25, 2966–2977 (2006).

    Article  CAS  Google Scholar 

  24. Cassidy-Stone, A. et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell 14, 193–204 (2008).

    Article  CAS  Google Scholar 

  25. Parone, P. A. et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 3, e3257 (2009).

    Article  Google Scholar 

  26. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  27. Benard, G. et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838–848 (2007).

    Article  CAS  Google Scholar 

  28. Taguchi, N., Ishihara, N., Jofuku, A., Oka, T. & Mihara, K. Mitochondrial phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529 (2007).

    Article  CAS  Google Scholar 

  29. Koehler, C. M. New developments in mitochondrial assembly. Annu. Rev. Cell Dev. Biol. 20, 309–335 (2004).

    Article  CAS  Google Scholar 

  30. Arnoult, D., Grodet, A., Lee, Y.-J., Estaquier, J. & Blackstone, C. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280, 35742–35750 (2005).

    Article  CAS  Google Scholar 

  31. Zimmerman, L. et al. Independent regulatory elements in the Nestin gene direct trangene expression to neural stem cells or muscle precursors. Neuron 12, 11–24 (1994).

    Article  CAS  Google Scholar 

  32. Luo, L. & O'Leary, D. D. M. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

    Article  CAS  Google Scholar 

  33. Uesaka, N., Hayano, Y., Yamada, A. & Yamamoto, N. Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching. J. Neurosci. 27, 5215–23 (2007).

    Article  CAS  Google Scholar 

  34. Koch, A., Schneider, G., Lüers, G. H. & Schrader, M. Peroxisome elongation and constriction but not fission can occur independently of dynamin-like protein 1. J. Cell Sci. 117, 3995–4006 (2004).

    Article  CAS  Google Scholar 

  35. Chang, D. T. W. & Reynolds, I. J. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog. Neurobiol. 80, 242–268 (2006).

    Article  Google Scholar 

  36. Li, H. et al. Bcl-XL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc. Natl Acad. Sci. USA 105, 2169–2174 (2008).

    Article  CAS  Google Scholar 

  37. Szabadkai, G. et al. Drp1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol. Cell 16, 59–68 (2004).

    Article  CAS  Google Scholar 

  38. Uren, R. T. et al. Mitochondrial release of pro-apoptogenic proteins. Electrostatic interactions can hold cytochrome c but not Smac/DIABLO to mitochondrial membranes. J. Biol. Chem. 280, 2266–2274 (2005).

    Article  CAS  Google Scholar 

  39. Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

    Article  CAS  Google Scholar 

  40. Sun, M. G. et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nature Cell Biol. 9, 1057–1065 (2007).

    Article  CAS  Google Scholar 

  41. Yamaguchi, R. et al. OPA1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell 31, 1–13 (2008).

    Article  Google Scholar 

  42. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B. & Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl Acad. Sci. USA 99, 1259–1263 (2002).

    Article  CAS  Google Scholar 

  43. Koppenol, W. H., Vroonland, C. A. & Braams, R. The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c. Biochim. Biophys. Acta 503, 499–508 (1978).

    Article  CAS  Google Scholar 

  44. Oka, T. et al. Identification of a novel protein MICS1 that is involved in maintenance of mitochondrial morphology and apoptotic release of cytochrome c. Mol. Biol. Cell 19, 2597–2608 (2008).

    Article  CAS  Google Scholar 

  45. Wasiak, S., Zunino, R. & McBride, H. M. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177, 439–450 (2007).

    Article  CAS  Google Scholar 

  46. Karbowski, M., Norris, K., Cleland, M., Jeong, S. & Youle, R. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658–662 (2006).

    Article  CAS  Google Scholar 

  47. Baes, M. et al. A mouse model for Zellweger syndrome. Nature Genet. 17, 49–57 (1997).

    Article  CAS  Google Scholar 

  48. Li, X. et al. PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol. Cell. Biol. 22, 4358–4365 (2002).

    Article  CAS  Google Scholar 

  49. Ishihara, N., Jofuku, A., Eura, Y. & Mihara, K. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem. Biophys. Res. Commun. 301, 891–898 (2003).

    Article  CAS  Google Scholar 

  50. Kato, H., Sakaki, K. & Mihara, K. Ubiquitin-proteasome-dependent degradation of mammalian ER stearoyl-CoA desaturase. J. Cell Sci. 119, 2342–2353 (2006).

    Article  CAS  Google Scholar 

  51. Suzuki, H., Okazawa, Y., Komiya, T. & Mihara, K. Characterization of rat Tom40, a central cmponent of the preprotein translocase of the mitochondrial outer membrane. J. Biol. Chem. 275, 37930–37936 (2000).

    Article  CAS  Google Scholar 

  52. Jofuku, A., Ishihara, N. & Mihara, K. Analysis of the functional domains of rat mitochondrial Fis1, the mitchondrial fission-stimulating protein. Biochem. Biophys. Res. Commun. 333, 650–659 (2005).

    Article  CAS  Google Scholar 

  53. Ishihara, N. & Mihara, K. Identification of the protein import components of the rat mitochondrial inner membrane, rTIM17, rTIM23 and rTIM44. J. Biochem. (Tokyo) 123, 722–732 (1998).

    Article  CAS  Google Scholar 

  54. Eura, Y., Ishihara, N., Yokota, S. & Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. (Tokyo) 134, 333–344 (2003).

    Article  CAS  Google Scholar 

  55. Seligman, A. M., Karnovsky, M. J., Wasserkrug, H. L. & Hanker, J. S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 38, 1–14 (1968).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Toshihiko Oka, Dr Noboru Mizushima, Dr Akira Kondo and members of the Mihara laboratory for productive discussions. We also thank Dr Richard Youle and Dr Atsushi Tanaka for critical reading of the manuscript and for advice. This work was supported by grants from the Ministry of Education, Science, and Culture of Japan, from the Human Frontier Science Program, from Core Research from Evolutional Science and Technology, and from the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.N., A.J., K. Masuda, N.I., Y.N. and H.M. contributed to the generation of Drp1−/− mice and NS-Drp1−/− mice, and S.O.S., A.J. and H.K. analysed the phenotypes mainly in the brain. S.O.S. performed the diagnoses on the mice brain. S.O.S., A.J., N.I. and H.K. contributed to analyses of neuronal primary cultured cells of NS-Drp1−/− mice. N.I., A.J., N.T. and M.M. contributed to analyses of Drp1−/− ES and MEF cells, and H.O. and A.J. analysed the apoptotic response. I.N. and Y.G. contributed to histochemical EM for Drp1−/− mice brain, and Y.S. contributed to all conventional EM analyses. K. Mihara planned the project, analysed the data, and wrote the manuscript except the part relating to medical diagnosis for the brains of Drp1-knockout mice, which was written by S.O.S.

Corresponding author

Correspondence to Katsuyoshi Mihara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2174 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, N., Nomura, M., Jofuku, A. et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol 11, 958–966 (2009). https://doi.org/10.1038/ncb1907

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1907

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing