Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast

Abstract

Accurate chromosome segregation depends on the kinetochore, which is the complex of proteins that link microtubules to centromeric DNA1. The kinetochore of the budding yeast Saccharomyces cerevisiae consists of more than 80 proteins assembled on a 125-bp region of DNA1. We studied the assembly and function of kinetochore components by fusing individual kinetochore proteins to the lactose repressor (LacI) and testing their ability to improve segregation of a plasmid carrying tandem repeats of the lactose operator (LacO). Targeting Ask1, a member of the Dam1–DASH microtubule-binding complex, creates a synthetic kinetochore that performs many functions of a natural kinetochore: it can replace an endogenous kinetochore on a chromosome, bi-orient sister kinetochores at metaphase during the mitotic cycle, segregate sister chromatids, and repair errors in chromosome attachment. We show the synthetic kinetochore functions do not depend on the DNA-binding components of the natural kinetochore but do require other kinetochore proteins. We conclude that tethering a single kinetochore protein to DNA triggers assembly of the complex structure that directs mitotic chromosome segregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assay for a synthetic kinetochore.
Figure 2: The synthetic kinetochore can replace a natural kinetochore.
Figure 3: The synthetic kinetochore requires many components of natural kinetochores.

Similar content being viewed by others

References

  1. Tanaka, T. U. & Desai, A. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol. 20, 53–63 (2008).

    Article  CAS  Google Scholar 

  2. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    Article  CAS  Google Scholar 

  3. Westermann, S., Drubin, D. G. & Barnes, G. Structures and functions of yeast kinetochore complexes. Annu. Rev. Biochem. 76, 563–591 (2007).

    Article  CAS  Google Scholar 

  4. Murray, A. W. & Szostak, J. W. Pedigree analysis of plasmid segregation in yeast. Cell 34, 961–970 (1983).

    Article  CAS  Google Scholar 

  5. Clarke, L. & Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287, 504–509 (1980).

    Article  CAS  Google Scholar 

  6. Cheeseman, I. M. et al. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J. Cell Biol. 155, 1137–1145 (2001).

    Article  CAS  Google Scholar 

  7. Li, Y. et al. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev. 16, 183–197 (2002).

    Article  CAS  Google Scholar 

  8. Janke, C., Ortiz, J., Tanaka, T. U., Lechner, J. & Schiebel, E. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J. 21, 181–193 (2002).

    Article  CAS  Google Scholar 

  9. Kiermaier, E., Woehrer, S., Peng, Y., Mechtler, K. & Westermann, S. A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nature Cell Biol. doi: 10.1038/ncb1924 (2009).

  10. Haber, J. E. & Thorburn, P. C. Healing of broken linear dicentric chromosomes in yeast. Genetics 106, 207–226 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hill, A. & Bloom, K. Genetic manipulation of centromere function. Mol. Cell Biol. 7, 2397–2405 (1987).

    Article  CAS  Google Scholar 

  12. Joglekar, A. P., Salmon, E. D. & Bloom, K. S. Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins. Methods Cell Biol. 85, 127–151 (2008).

    Article  CAS  Google Scholar 

  13. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  Google Scholar 

  14. Goshima, G. & Yanagida, M. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100, 619–633 (2000).

    Article  CAS  Google Scholar 

  15. He, X., Asthana, S. & Sorger, P. K. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101, 763–775 (2000).

    Article  CAS  Google Scholar 

  16. Tanaka, T., Fuchs, J., Loidl, J. & Nasmyth, K. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biol. 2, 492–499 (2000).

    Article  CAS  Google Scholar 

  17. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev. 13, 532–544 (1999).

    Article  CAS  Google Scholar 

  18. Biggins, S. & Murray, A. W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    Article  CAS  Google Scholar 

  19. He, X., Rines, D. R., Espelin, C. W. & Sorger, P. K. Molecular analysis of kinetochore–microtubule attachment in budding yeast. Cell 106, 195–206 (2001).

    Article  CAS  Google Scholar 

  20. Tanaka, T. U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  Google Scholar 

  21. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  Google Scholar 

  22. Gaudet, A. & Fitzgerald-Hayes, M. Alterations in the adenine-plus-thymine-rich region of CEN3 affect centromere function in Saccharomyces cerevisiae. Mol. Cell Biol. 7, 68–75 (1987).

    Article  CAS  Google Scholar 

  23. Yeh, E. et al. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18, 81–90 (2008).

    Article  CAS  Google Scholar 

  24. Westermann, S. et al. Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol. Cell 17, 277–290 (2005).

    Article  CAS  Google Scholar 

  25. Tanaka, K., Kitamura, E., Kitamura, Y. & Tanaka, T. U. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles. J. Cell Biol. 178, 269–281 (2007).

    Article  CAS  Google Scholar 

  26. Li, Y. & Elledge, S. J. The DASH complex component Ask1 is a cell cycle-regulated Cdk substrate in Saccharomyces cerevisiae. Cell Cycle 2, 143–148 (2003).

    Article  CAS  Google Scholar 

  27. Higuchi, T. & Uhlmann, F. Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation. Nature 433, 171–176 (2005).

    Article  CAS  Google Scholar 

  28. Goh, P. Y. & Kilmartin, J. V. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121, 503–512 (1993).

    Article  CAS  Google Scholar 

  29. Henikoff, S., Ahmad, K. & Malik, H. S. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001).

    Article  CAS  Google Scholar 

  30. Marshall, O. J., Chueh, A. C., Wong, L. H. & Choo, K. H. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82, 261–282 (2008).

    Article  CAS  Google Scholar 

  31. Velmurugan, S., Yang, X. M., Chan, C. S., Dobson, M. & Jayaram, M. Partitioning of the 2-microm circle plasmid of Saccharomyces cerevisiae. Functional coordination with chromosome segregation and plasmid-encoded rep protein distribution. J. Cell Biol. 149, 553–566 (2000).

    Article  CAS  Google Scholar 

  32. Hajra, S., Ghosh, S. K. & Jayaram, M. The centromere-specific histone variant Cse4p (CENP-A) is essential for functional chromatin architecture at the yeast 2-microm circle partitioning locus and promotes equal plasmid segregation. J. Cell Biol. 174, 779–790 (2006).

    Article  CAS  Google Scholar 

  33. Sherman, F., Lawrence, C. W. & Fink, G. R. Methods in Yeast Genetics. (Cold Spring Harbor Laboratory Press,1979).

    Google Scholar 

  34. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  35. Lang, G. I. & Murray, A. W. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178, 67–82 (2008).

    Article  CAS  Google Scholar 

  36. Foster, P. L. Methods for determining spontaneous mutation rates. Methods Enzymol. 409, 195–213 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Greg Lang, Joana Gonçalves-Sá, John Koschwanez, Gregg Wildenberg and Dai Tsuchiya for technical advice; Charles Asbury, Ted Salmon, Steve Elledge, Ajit Joglekar, Frank Solomon, Amy Rowat and members of the Murray lab for critical reading of the manuscript; and Steve Elledge, John Kilmartin and Sue Biggins for strains. This work was supported by a US National Institutes of Health (NIH) National Research Service Award fellowship to S.L. and an NIH grant to A.W.M. (GM043987).

Author information

Authors and Affiliations

Authors

Contributions

S.L. and A.W.M. conceived and designed the experiments. S.L. and D.T.L. performed and analysed the experiments. S.L. and A.W.M. wrote the manuscript.

Corresponding author

Correspondence to Andrew W. Murray.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacefield, S., Lau, D. & Murray, A. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat Cell Biol 11, 1116–1120 (2009). https://doi.org/10.1038/ncb1925

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1925

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing