Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Histone deacetylase and Cullin3–RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation

Abstract

Hedgehog signalling is crucial for development and is deregulated in several tumours, including medulloblastoma. Regulation of the transcriptional activity of Gli (glioma-associated oncogene) proteins, effectors of the Hedgehog pathway, is poorly understood. We show here that Gli1 and Gli2 are acetylated proteins and that their HDAC-mediated deacetylation promotes transcriptional activation and sustains a positive autoregulatory loop through Hedgehog-induced upregulation of HDAC1. This mechanism is turned off by HDAC1 degradation through an E3 ubiquitin ligase complex formed by Cullin3 and REN, a Gli antagonist lost in human medulloblastoma. Whereas high HDAC1 and low REN expression in neural progenitors and medulloblastomas correlates with active Hedgehog signalling, loss of HDAC activity suppresses Hedgehog-dependent growth of neural progenitors and tumour cells. Consistent with this, abrogation of Gli1 acetylation enhances cellular proliferation and transformation. These data identify an integrated HDAC- and ubiquitin-mediated circuitry, where acetylation of Gli proteins functions as an unexpected key transcriptional checkpoint of Hedgehog signalling.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HDAC1 and HDAC2 are transcriptional enhancers of Gli1 activity.
Figure 2: Gli1 and Gli2 are acetylated and deacetylated.
Figure 3: Gli1 is acetylated at Lys 518 in vitro and in vivo.
Figure 4: Shh promotes Gli1 activity by increasing HDAC1 levels.
Figure 5: REN inhibits HDAC1 activity.
Figure 6: REN forms a ubiquitin ligase complex with Cul3.
Figure 7: HDAC1 is ubiquitylated and negatively regulated by the Cul3–REN complex.
Figure 8: HDAC1 controls Hh-dependent GCP and medulloblastoma cell growth.

Similar content being viewed by others

References

  1. Ruitz i Altaba, A. Hedgehog-Gli Signaling in Human Diseases (Plenum, 2006).

    Book  Google Scholar 

  2. Jiang, J. & Hui, C. C. Hedgehog signaling in development and cancer. Dev. Cell 15, 801–812 (2008).

    Article  CAS  Google Scholar 

  3. Ruppert, J. M., Vogelstein, B. & Kinzler, K. W. The zinc finger protein GLI transforms primary cells in cooperation with adenovirus E1A. Mol. Cell Biol. 11, 1724–1728 (1991).

    Article  CAS  Google Scholar 

  4. Kimura, H., Stephen, D., Joyner, A. & Curran, T. Gli1 is important for medulloblastoma formation in Ptc1+/− mice. Oncogene 24, 4026–4036 (2005).

    Article  CAS  Google Scholar 

  5. Ferretti, E. et al. Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J. 27, 2616–2627 (2008).

    Article  CAS  Google Scholar 

  6. Huntzicker, E. G. et al. Dual degradation signals control Gli protein stability and tumor formation. Genes Dev. 20, 276–281 (2006).

    Article  CAS  Google Scholar 

  7. Di Marcotullio, L. et al. Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nature Cell Biol. 8, 1415–1423 (2006).

    Article  CAS  Google Scholar 

  8. Minucci, S. & Pelicci, P. G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Rev. Cancer 6, 38–51 (2006).

    Article  CAS  Google Scholar 

  9. Glozak, M. A., Sengupta, N., Zhang, X. & Seto, E. Acetylation and deacetylation of non-histone proteins. Gene 363, 15–23 (2005).

    Article  CAS  Google Scholar 

  10. Zupkovitz, G. et al. Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol. Cell Biol. 26, 7913–7928 (2006).

    Article  CAS  Google Scholar 

  11. Yang, X. J. & Seto, E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nature Rev. Mol. Cell Biol. 9, 206–218 (2008).

    Article  CAS  Google Scholar 

  12. Dai, P. et al. Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3. J. Biol. Chem. 274, 8143–8152 (1999).

    Article  CAS  Google Scholar 

  13. Dai, P. et al. Ski is involved in transcriptional regulation by the repressor and full-length forms of Gli3. Genes Dev. 16, 2843–2848 (2002).

    Article  CAS  Google Scholar 

  14. Yoon, J. W. et al. GLI activates transcription through a herpes simplex viral protein 16-like activation domain. J. Biol. Chem. 273, 3496–3501 (1998).

    Article  CAS  Google Scholar 

  15. Di Marcotullio, L. et al. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc. Natl Acad. Sci. USA 101, 10833–10838 (2004).

    Article  CAS  Google Scholar 

  16. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  Google Scholar 

  17. Chen, J. K., Taipale, J., Young, K. E., Maiti, T. & Beachy, P. A. Small molecule modulation of Smoothened activity. Proc. Natl Acad. Sci. USA 99, 14071–14076 (2002).

    Article  CAS  Google Scholar 

  18. Canettieri, G. et al. The coactivator CRTC1 promotes cell proliferation and transformation via AP-1. Proc. Natl Acad. Sci. USA 106, 1445–1450 (2009).

    Article  CAS  Google Scholar 

  19. Cheng, S. Y. & Bishop, J. M. Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc. Natl Acad. Sci. USA 99, 5442–5447 (2002).

    Article  CAS  Google Scholar 

  20. Argenti, B. et al. Hedgehog antagonist REN(KCTD11) regulates proliferation and apoptosis of developing granule cell progenitors. J. Neurosci. 25, 8338–8346 (2005).

    Article  CAS  Google Scholar 

  21. Goodrich, L. V., MilenkoviĆ, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  22. Pintard, L., Willems, A. & Peter, M. Cullin-based ubiquitin ligases: Cul3–BTB complexes join the family. EMBO J. 23, 1681–1687 (2004).

    Article  CAS  Google Scholar 

  23. Bar, E. E., Chaudhry, A., Farah, M. H. & Eberhart, C. G. Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am. J. Pathol. 170, 347–355 (2007).

    Article  CAS  Google Scholar 

  24. Montgomery, R. L., Hsieh, J., Barbosa, A. C., Richardson, J. A. & Olson, E. N. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc. Natl Acad. Sci. USA 106, 7876–7881 (2009).

    Article  CAS  Google Scholar 

  25. Shakéd, M. et al. Histone deacetylases control neurogenesis in embryonic brain by inhibition of BMP2/4 signaling. PLoS One 3, e2668 (2008).

    Article  Google Scholar 

  26. Zhao, H., Ayrault, O., Zindy, F., Kim, J. H. & Roussel, M. F. Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev. 22, 722–727 (2008).

    Article  CAS  Google Scholar 

  27. Rios, I., Alvarez-Rodriguez, R., Martí, E. & Pons, S. Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development 131, 3159–3168 (2004).

    Article  CAS  Google Scholar 

  28. Cunliffe, V. T. Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 131, 2983–2995 (2004).

    Article  CAS  Google Scholar 

  29. Kim, J. E., Chen, J. & Lou, Z. DBC1 is a negative regulator of SIRT1. Nature 451, 583–586 (2008).

    Article  CAS  Google Scholar 

  30. Zhao, W. et al. Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451, 587–590 (2008).

    Article  CAS  Google Scholar 

  31. Spiller, S. E., Ravanpay, A. C., Hahn, A. W. & Olson, J. M. Suberoylanilide hydroxamic acid is effective in preclinical studies of medulloblastoma. J. Neurooncol. 79, 259–270 (2006).

    Article  CAS  Google Scholar 

  32. Ecke, I. et al. Antitumor effects of a combined 5-aza-2′deoxycytidine and valproic acid treatment on rhabdomyosarcoma and medulloblastoma in Ptch mutant mice. Cancer Res. 69, 887–895 (2009).

    Article  CAS  Google Scholar 

  33. Scales, S. J. & de Sauvage, F. J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 30, 303–312 (2009).

    Article  CAS  Google Scholar 

  34. Chun, S. G., Zhou, W. & Yee, N. S. Combined targeting of histone deacetylases and hedgehog signaling enhances cytoxicity in pancreatic cancer. Cancer Biol. Ther. 8, 1328–1339 (2009).

    Article  CAS  Google Scholar 

  35. Canettieri, G. et al. Attenuation of a phosphorylation-dependent activator by an HDAC–PP1 complex. Nature Struct. Biol. 10, 175–181 (2003).

    Article  CAS  Google Scholar 

  36. Zhang, Q. et al. A hedgehog-induced BTB protein modulates hedgehog signaling by degrading Ci/Gli transcription factor. Dev. Cell 10, 719–729 (2006).

    Article  CAS  Google Scholar 

  37. Peschiaroli, A. et al. SCFβTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol. Cell 23, 319–329 (2006).

    Article  CAS  Google Scholar 

  38. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  Google Scholar 

  39. Zhao, X. et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biol. 10, 643–653 (2008).

    Article  CAS  Google Scholar 

  40. Lahm, A. et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc. Natl Acad. Sci. USA 104, 17335–17340 (2007).

    Article  CAS  Google Scholar 

  41. Pappin, D. J. Peptide mass fingerprinting using MALDI-TOF mass spectrometry. Methods Mol. Biol. 211, 211–219 (2003).

    CAS  PubMed  Google Scholar 

  42. Zheng, N. et al. Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703–709 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. P. Scott for the gift of Ptch1−/− cells, G. Giannini and M. Levrero, for helpful suggestions, L. Di Magno, M. Della Guardia, C. Fragomeli and D. Mazzà for experimental support. This work was supported by the Associazione Italiana per la Ricerca sul Cancro, Telethon Grant GGP07118, the Ministry of University and Research (FIRB and PRIN), the Ministry of Health, the Fondazione Roma Foundation, the Mariani Foundation, the Cenci-Bolognetti Foundation and the Rome Oncogenomic Center.

Author information

Authors and Affiliations

Authors

Contributions

G.C. and L.D.M. designed and performed experiments, analysed data and wrote the paper; A.G., S.C., L.A., P.I., L.P., E.M., M.P., G.D.S., E.M.P., P.G. and A.G. performed experiments; E.D.S., E.F., C.S., L.V., C.P., M.E.S. and I.S. analysed data; A.G. designed experiments, analysed data and wrote the paper.

Corresponding author

Correspondence to Alberto Gulino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information Figures (PDF 1387 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canettieri, G., Di Marcotullio, L., Greco, A. et al. Histone deacetylase and Cullin3–RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nat Cell Biol 12, 132–142 (2010). https://doi.org/10.1038/ncb2013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2013

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer