Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair

Abstract

DNA double-strand breaks (DSBs) trigger ATM (ataxia telangiectasia mutated) signalling and elicit genomic rearrangements and chromosomal fragmentation if misrepaired or unrepaired. Although most DSB repair is ATM-independent, 15% of ionizing radiation (IR)-induced breaks persist in the absence of ATM-signalling1. 53BP1 (p53-binding protein 1) facilitates ATM-dependent DSB repair but is largely dispensable for ATM activation or checkpoint arrest. ATM promotes DSB repair within heterochromatin by phosphorylating KAP-1 (KRAB-associated protein 1, also known as TIF1β, TRIM28 or KRIP-1; ref. 2). Here, we show that the ATM signalling mediator proteins MDC1, RNF8, RNF168 and 53BP1 are also required for heterochromatic DSB repair. Although KAP-1 phosphorylation is critical for 53BP1-mediated repair, overall phosphorylated KAP-1 (pKAP-1) levels are only modestly affected by 53BP1 loss. pKAP-1 is transiently pan-nuclear but also forms foci overlapping with γH2AX in heterochromatin. Cells that do not form 53BP1 foci, including human RIDDLE (radiosensitivity, immunodeficiency, dysmorphic features and learning difficulties) syndrome cells, fail to form pKAP-1 foci. 53BP1 amplifies Mre11–NBS1 accumulation at late-repairing DSBs, concentrating active ATM and leading to robust, localized pKAP-1. We propose that ionizing-radiation induced foci (IRIF) spatially concentrate ATM activity to promote localized alterations in regions of chromatin otherwise inhibitory to repair.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 53BP1, RNF8 and MDC1 are essential for heterochromatic DSB repair by promoting KAP-1 phosphorylation.
Figure 2: Discrete foci of pKAP-1 persist at late-repairing IR-induced foci.
Figure 3: Cells which fail to form 53BP1 foci fail to maintain high levels of pKAP-1 in the vicinity of a DSB.
Figure 4: 53BP1 concentrates active ATM at sites of damage.
Figure 5: 53BP1 promotes MRN hyper-accumulation at sites of damage.

Similar content being viewed by others

References

  1. Riballo, E. et al. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to γ-H2AX foci. Mol. Cell 16, 715–724 (2004).

    Article  CAS  Google Scholar 

  2. Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).

    Article  CAS  Google Scholar 

  3. Ziv, Y. et al. Chromatin relaxation in response to DNA double-strand breaks is modulated by a novel ATM- and KAP-1 dependent pathway. Nature Cell Biol. 8, 870–876 (2006).

    Article  CAS  Google Scholar 

  4. Kruhlak, M. J., Celeste, A. & Nussenzweig, A. Spatio-temporal dynamics of chromatin containing DNA breaks. Cell Cycle 5, 1910–1912 (2006).

    Article  CAS  Google Scholar 

  5. Downs, J. A. et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16, 979–990 (2004).

    Article  CAS  Google Scholar 

  6. Dimitrova, N., Chen, Y. C., Spector, D. L. & de Lange, T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456, 524–528 (2008).

    Article  CAS  Google Scholar 

  7. Difilippantonio, S. et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature 456, 529–533 (2008).

    Article  CAS  Google Scholar 

  8. Lavin, M. F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nature Rev. Mol. Cell Biol. 9, 759–769 (2008).

    Article  CAS  Google Scholar 

  9. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  Google Scholar 

  10. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

    Article  CAS  Google Scholar 

  11. Kinner, A., Wu, W., Staudt, C. & Iliakis, G. γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36, 5678–5694 (2008).

    Article  CAS  Google Scholar 

  12. Stiff, T. et al. ATM and DNA-PK function redundantly to phosphorylate H2AX following exposure to ionizing radiation. Cancer Res. 64, 2390–2396 (2004).

    Article  CAS  Google Scholar 

  13. Wilson, K. A. & Stern, D. F. NFBD1/MDC1, 53BP1 and BRCA1 have both redundant and unique roles in the ATM pathway. Cell Cycle 7, 3584–3594 (2008).

    Article  CAS  Google Scholar 

  14. Stewart, G. S. et al. RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc. Natl Acad. Sci. USA 104, 16910–16915 (2007).

    Article  CAS  Google Scholar 

  15. Maser, R. S., Monsen, K. J., Nelms, B. E. & Petrini, J. H. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17, 6087–6096 (1997).

    Article  CAS  Google Scholar 

  16. Mirzoeva, O. K. & Petrini, J. H. DNA damage-dependent nuclear dynamics of the Mre11 complex. Mol. Cell Biol. 21, 281–288 (2001).

    Article  CAS  Google Scholar 

  17. Melander, F. et al. Phosphorylation of SDT repeats in the MDC1 N. terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J. Cell Biol. 181, 213–226 (2008).

    Article  CAS  Google Scholar 

  18. Spycher, C. et al. Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J. Cell Biol. 181, 227–240 (2008).

    Article  CAS  Google Scholar 

  19. Chapman, J. R. & Jackson, S. P. Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep. 9, 795–801 (2008).

    Article  CAS  Google Scholar 

  20. Iwabuchi, K. et al. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J. Biol. Chem. 278, 36487–36495 (2003).

    Article  CAS  Google Scholar 

  21. Derbyshire, D. J. et al. Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J. 21, 3863–3872 (2002).

    Article  CAS  Google Scholar 

  22. Manke, I. A., Lowery, D. M., Nguyen, A. & Yaffe, M. B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639 (2003).

    Article  CAS  Google Scholar 

  23. Yu, X., Chini, C. C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science 302, 639–642 (2003).

    Article  CAS  Google Scholar 

  24. Lee, J. H., Goodarzi, A. A., Jeggo, P. A. & Paull, T. T. 53BP1 promotes ATM activity through direct interactions with the MRN complex. EMBO J. doi: 10.1038/emboj.2009.372 (2009).

    Article  CAS  Google Scholar 

  25. Fernandez-Capetillo, O., Lee, A., Nussenzweig, M. & Nussenzweig, A. H2AX: the histone guardian of the genome. DNA Repair (Amst.) 3, 959–967 (2004).

    Article  CAS  Google Scholar 

  26. Stucki, M. & Jackson, S. P. MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair (Amst.) 3, 953–957 (2004).

    Article  CAS  Google Scholar 

  27. Bekker-Jensen, S. et al. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J. Cell Biol. 173, 195–206 (2006).

    Article  CAS  Google Scholar 

  28. Li, X. et al. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in regulating KAP1-mediated transcriptional repression. J. Biol. Chem. 282, 36177–36189 (2007).

    Article  CAS  Google Scholar 

  29. Lee, Y. K., Thomas, S. N., Yang, A. J. & Ann., D. K. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J. Biol. Chem. 282, 1595–1606 (2007).

    Article  CAS  Google Scholar 

  30. Uziel, T. et al. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22, 5612–5621 (2003).

    Article  CAS  Google Scholar 

  31. Lee, J. H. & Paull, T. T. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304, 93–96 (2004).

    Article  CAS  Google Scholar 

  32. Riballo, E. et al. XLF-Cernunnos promotes DNA ligase IV-XRCC4 re-adenylation following ligation. Nucleic Acids Res. 37, 482–492 (2009).

    Article  CAS  Google Scholar 

  33. Stiff, T. et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J. 25, 5775–5782 (2006).

    Article  CAS  Google Scholar 

  34. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly 6of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  Google Scholar 

  35. Iwabuchi, K., Bartel, P. L., Li, B., Marraccino, R. & Fields, S. Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl Acad. Sci. USA 91, 6098–6102 (1994).

    Article  CAS  Google Scholar 

  36. Goodarzi, A. A. et al. Autophosphorylation of ataxia-telangiectasia mutated is regulated by protein phosphatase 2A. EMBO J. 23, 4451–4461 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Paull for discussions of unpublished data, A. Vindigni for mass spectrometry analysis, K. Iwabuchi for 53BP1 expression constructs and Y. Shiloh and Y. Ziv for providing KAP-1 expression constructs. A.A.G. was supported by grants from the Alberta Heritage Foundation for Medical Research and the Association for International Cancer Research (AICR). The P.A.J. laboratory is funded by the MRC, AICR, the Wellcome Research Fund, the Department of Health (UK) and the EU integrated projects on DNA-Repair (LSHG-CT-2005-512113) and Risc-Rad (FI6R-CT-2003-508842).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed towards scientific discussion and manuscript editing. A.T.N. and A.A.G. performed the experiments. N.R. and M.L. provided PFGE data and, with A.S., first characterized the 53BP1/MDC1 DSB repair defect. G.S.S. provided RIDDLE syndrome cells complemented ± RNF168. A.A.G. and P.A.J. co-authored the manuscript and conceived and designed the study.

Corresponding authors

Correspondence to Penelope A. Jeggo or Aaron A. Goodarzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3874 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noon, A., Shibata, A., Rief, N. et al. 53BP1-dependent robust localized KAP-1 phosphorylation is essential for heterochromatic DNA double-strand break repair. Nat Cell Biol 12, 177–184 (2010). https://doi.org/10.1038/ncb2017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2017

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing