Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei

Abstract

The metaphase–anaphase transition is orchestrated through proteolysis of numerous proteins by a ubiquitin protein ligase called the anaphase-promoting complex or cyclosome (APC/C)1. A crucial aspect of this process is sister chromatid separation, which is thought to be mediated by separase, a thiol protease activated by the APC/C. Separase cleaves cohesin, a ring-shaped complex that entraps sister DNAs2,3. It is a matter of debate whether cohesin-independent forces also contribute to sister chromatid cohesion4,5,6. Using 4D live-cell imaging of Drosophila melanogaster syncytial embryos blocked in metaphase (via APC/C inhibition), we show that artificial cohesin cleavage7 is sufficient to trigger chromosome disjunction. This is nevertheless insufficient for correct chromosome segregation. Kinetochore–microtubule attachments are rapidly destabilized by the loss of tension caused by cohesin cleavage in the presence of high Cdk1 (cyclin-dependent kinase 1) activity, as occurs when the APC/C cannot destroy mitotic cyclins. Metaphase chromosomes undergo a bona fide anaphase when cohesin cleavage is combined with Cdk1 inhibition. We conclude that only two key events, opening of cohesin rings and downregulation of Cdk1, are sufficient to drive proper segregation of chromosomes in anaphase.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Injection of Mad2L13Q or UbcH10C114S prevents anaphase onset in Drosophila syncytial embryos.
Figure 2: Cleavage of cohesin is sufficient to trigger sister chromatid disjunction.
Figure 3: Loss of cohesin leads to unstable kinetochore–microtubule attachments.
Figure 4: Localization of Aurora B and BubRI after TEV-induced sister chromatid disjunction.
Figure 5: Cleavage of cohesin and Cdk inhibition trigger formation of daughter nuclei.

Similar content being viewed by others

References

  1. Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  Google Scholar 

  2. Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Haering, C. H., Farcas, A. M., Arumugam, P., Metson, J. & Nasmyth, K. The cohesin ring concatenates sister DNA molecules. Nature 454, 297–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Yanagida, M. Clearing the way for mitosis: is cohesin a target? Nature Rev. Mol. Cell Biol. 10, 489–496 (2009).

    Article  CAS  Google Scholar 

  5. Diaz-Martinez, L. A., Gimenez-Abian, J. F. & Clarke, D. J. Chromosome cohesion - rings, knots, orcs and fellowship. J. Cell Sci. 121, 2107–2114 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Guacci, V. Sister chromatid cohesion: the cohesin cleavage model does not ring true. Genes Cells 12, 693–708 (2007).

    CAS  PubMed  Google Scholar 

  7. Pauli, A. et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell 14, 239–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coelho, P. A. et al. Dual role of topoisomerase II in centromere resolution and aurora B activity. PLoS Biol. 6, e207 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Toyoda, Y. & Yanagida, M. Coordinated requirements of human topo II and cohesin for metaphase centromere alignment under Mad2-dependent spindle checkpoint surveillance. Mol. Biol. Cell 17, 2287–2302 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uemura, T. et al. DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50, 917–925 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Porter, A. C. & Farr, C. J. Topoisomerase II: untangling its contribution at the centromere. Chromosome Res. 12, 569–583 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Shimada, K. & Gasser, S. M. The origin recognition complex functions in sister-chromatid cohesion in Saccharomyces cerevisiae. Cell 128, 85–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Lam, W. W., Peterson, E. A., Yeung, M. & Lavoie, B. D. Condensin is required for chromosome arm cohesion during mitosis. Genes Dev. 20, 2973–2984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117, 471–482 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12, 1986–1997 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sonoda, E. et al. Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Dev. Cell 1, 759–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Vass, S. et al. Depletion of Drad21/Scc1 in Drosophila cells leads to instability of the cohesin complex and disruption of mitotic progression. Curr. Biol. 13, 208–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Sumara, I., Vorlaufer, E., Gieffers, C., Peters, B. H. & Peters, J. M. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151, 749–762 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warren, W. D. et al. The Drosophila RAD21 cohesin persists at the centromere region in mitosis. Curr. Biol. 10, 1463–1466 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  Google Scholar 

  22. Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730–743 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Luo, X. et al. Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nature Struct. Biol. 7, 224–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Townsley, F. M., Aristarkhov, A., Beck, S., Hershko, A. & Ruderman, J. V. Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc. Natl Acad. Sci. USA 94, 2362–2367 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Logarinho, E. et al. Different spindle checkpoint proteins monitor microtubule attachment and tension at kinetochores in Drosophila cells. J. Cell Sci. 117, 1757–1771 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Buffin, E., Lefebvre, C., Huang, J., Gagou, M. E. & Karess, R. E. Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr. Biol. 15, 856–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Buchenau, P., Saumweber, H. & Arndt-Jovin, D. J. Consequences of topoisomerase II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J. Cell Sci. 104, 1175–1185 (1993).

    CAS  PubMed  Google Scholar 

  29. Kelly, A. E. & Funabiki, H. Correcting aberrant kinetochore microtubule attachments: an Aurora B-centric view. Curr. Opin. Cell Biol. 21, 51–58 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murata-Hori, M., Tatsuka, M. & Wang, Y. L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell 13, 1099–1108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murray, A. W., Solomon, M. J. & Kirschner, M. W. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339, 280–286 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Thornton, B. R. & Toczyski, D. P. Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biol. 5, 1090–1094 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67–74 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-β and contact inhibition to cell cycle arrest. Genes Dev. 8, 9–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Sullivan, M., Lehane, C. & Uhlmann, F. Orchestrating anaphase and mitotic exit: separase cleavage and localization of Slk19. Nature Cell Biol. 3, 771–777 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sullivan, W., Ashburner, A. & Hawley, R. S. Drosophila Protocols (Cold Spring Harbor Laboratory Press, 2000).

    Google Scholar 

  39. Rape, M., Reddy, S. K. & Kirschner, M. W. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. McGuinness, B. E. et al. Regulation of APC/C activity in oocytes by a Bub1-dependent spindle assembly checkpoint. Curr. Biol. 19, 369–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Heidmann, J. Mummery-Widmer, R. Karess, T. Hunt and M. Rape for fly strains and plasmids, A. Musacchio, T. Hunt and J.-M. Peters for helpful advice, S. Dixon, J. Metson and P. Guna for technical assistance, R. Parton for help with microscopy and microinjection and J. Raff, B. Novák and all the members of the K.N. laboratory for discussions and comments on the manuscript. R.A.O. holds a post-doctoral fellowship from the Fundação para a Ciência e a Tecnologia of Portugal. R.S.H. and I.D. were supported by a Senior Research Fellowship from the Welcome Trust to I.D. Work in the laboratory of K.N. is supported by grants from Medical Research Council (MRC) and Wellcome Trust.

Author information

Authors and Affiliations

Authors

Contributions

R.A.O., A.P. and K.N. designed the experiments; R.A.O. performed the experiments; A.P. developed the TEV cleavage system in flies; R.S.H. developed Particle Stats for quantitative analysis; I.D. contributed to Particle Stats design. R.A.O. and K.N. wrote the manuscript.

Corresponding author

Correspondence to Kim Nasmyth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2940 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1130 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1085 kb)

Supplementary Information

Supplementary Movie 3 (MOV 3602 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1180 kb)

Supplementary Information

Supplementary Movie 5 (MOV 1098 kb)

Supplementary Information

Supplementary Movie 6 (MOV 1012 kb)

Supplementary Information

Supplementary Movie 7 (MOV 1248 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, R., Hamilton, R., Pauli, A. et al. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol 12, 185–192 (2010). https://doi.org/10.1038/ncb2018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2018

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing