Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells

Abstract

Orai1 and STIM1 are critical components of Ca2+ release-activated Ca2+ (CRAC) channels that mediate store-operated Ca2+ entry (SOCE) in immune cells. Although it is known that Orai1 and STIM1 co-cluster and physically interact to mediate SOCE, the cytoplasmic machinery modulating these functions remains poorly understood. We sought to find modulators of Orai1 and STIM1 using affinity protein purification and identified a novel EF-hand protein, CRACR2A (also called CRAC regulator 2A, EFCAB4B or FLJ33805). We show that CRACR2A interacts directly with Orai1 and STIM1, forming a ternary complex that dissociates at elevated Ca2+ concentrations. Studies using knockdown mediated by small interfering RNA (siRNA) and mutagenesis show that CRACR2A is important for clustering of Orai1 and STIM1 upon store depletion. Expression of an EF-hand mutant of CRACR2A enhanced STIM1 clustering, elevated cytoplasmic Ca2+ and induced cell death, suggesting its active interaction with CRAC channels. These observations implicate CRACR2A, a novel Ca2+ binding protein that is highly expressed in T cells and conserved in vertebrates, as a key regulator of CRAC channel-mediated SOCE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of CRACR2A as a binding partner of Orai1 by large-scale affinity purification.
Figure 2: CRACR2A interacts directly with Orai and STIM1.
Figure 3: CRACR2A has an important role in Orai1-mediated SOCE in T cells.
Figure 4: CRACR2A is essential for cluster formation of Orai1 and STIM1 in T cells.
Figure 5: An EF-hand mutant of CRACR2A causes spontaneous clustering of STIM1.
Figure 6: CRACR2A regulates SOCE and CRAC channel-mediated Ca2+ oscillations in T cells.
Figure 7: Expression of an EF-hand mutant of CRACR2A induces cell death in Jurkat T cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Feske, S. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7, 690–702 (2007).

    Article  CAS  Google Scholar 

  2. Vig, M. & Kinet, J. P. Calcium signaling in immune cells. Nat. Immunol. 10, 21–27 (2009).

    Article  CAS  Google Scholar 

  3. Gwack, Y., Feske, S., Srikanth, S., Hogan, P. G. & Rao, A. Signalling to transcription: store-operated Ca2+ entry and NFAT activation in lymphocytes. Cell Calcium 42, 145–156 (2007).

    Article  CAS  Google Scholar 

  4. Lewis, R. S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol. 19, 497–521 (2001).

    Article  CAS  Google Scholar 

  5. Cahalan, M. D. & Chandy, K. G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231, 59–87 (2009).

    Article  CAS  Google Scholar 

  6. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005).

    Article  CAS  Google Scholar 

  7. Roos, J. et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell Biol. 169, 435–445 (2005).

    Article  CAS  Google Scholar 

  8. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  Google Scholar 

  9. Luik, R. M., Wang, B., Prakriya, M., Wu, M. M. & Lewis, R. S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008).

    Article  CAS  Google Scholar 

  10. Feske, S. et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441, 179–185 (2006).

    Article  CAS  Google Scholar 

  11. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006).

    Article  CAS  Google Scholar 

  12. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006).

    Article  CAS  Google Scholar 

  13. Vig, M. et al. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312, 1220–1223 (2006).

    Article  CAS  Google Scholar 

  14. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006).

    Article  CAS  Google Scholar 

  15. Zhang, S. L. et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc. Natl Acad. Sci. USA 103, 9357–9362 (2006).

    Article  CAS  Google Scholar 

  16. Gwack, Y. et al. Biochemical and functional characterization of Orai proteins. J. Biol. Chem. 282, 16232–16243 (2007).

    Article  CAS  Google Scholar 

  17. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006).

    Article  CAS  Google Scholar 

  18. Xu, P. et al. Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem. Biophys. Res. Commun. 350, 969–976 (2006).

    Article  CAS  Google Scholar 

  19. Mercer, J. C. et al. Large store-operated calcium selective currents due to co-expression of Orai1 or Orai2 with the intracellular calcium sensor, Stim1. J. Biol. Chem. 281, 24979–24990 (2006).

    Article  CAS  Google Scholar 

  20. Peinelt, C. et al. Amplification of CRAC current by STIM1 and CRACM1 (Orai1). Nat. Cell Biol. 8, 771–773 (2006).

    Article  CAS  Google Scholar 

  21. Soboloff, J. et al. Orai1 and STIM reconstitute store-operated calcium channel function. J. Biol. Chem. 281, 20661–20665 (2006).

    Article  CAS  Google Scholar 

  22. Muik, M. et al. A cytosolic homomerization and a modulatory domain within STIM1 C terminus determine coupling to ORAI1 channels. J. Biol. Chem. 284, 8421–8426 (2009).

    Article  CAS  Google Scholar 

  23. Park, C. Y. et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136, 876–890 (2009).

    Article  CAS  Google Scholar 

  24. Yuan, J. P. et al. SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat. Cell Biol. 11, 337–343 (2009).

    Article  CAS  Google Scholar 

  25. Muik, M. et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283, 8014–8022 (2008).

    Article  CAS  Google Scholar 

  26. Navarro-Borelly, L. et al. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J. Physiol. 586, 5383–5401 (2008).

    Article  CAS  Google Scholar 

  27. Zhou, Y. et al. STIM1 gates the store-operated calcium channel ORAI1 in vitro. Nat. Struct. Mol. Biol. 17, 112–116 (2010).

    Article  CAS  Google Scholar 

  28. Li, Z. et al. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J. Biol. Chem. 282, 29448–29456 (2007).

    Article  CAS  Google Scholar 

  29. Varnai, P., Toth, B., Toth, D. J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J. Biol. Chem. 282, 29678–29690 (2007).

    Article  CAS  Google Scholar 

  30. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl Acad. Sci. USA 104, 9301–9306 (2007).

    Article  CAS  Google Scholar 

  31. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 103, 16704–16709 (2006).

    Article  CAS  Google Scholar 

  32. Lorenz, H., Hailey, D. W. & Lippincott-Schwartz, J. Fluorescence protease protection of GFP chimeras to reveal protein topology and subcellular localization. Nat. Methods 3, 205–210 (2006).

    Article  CAS  Google Scholar 

  33. Lorenz, H., Hailey, D. W., Wunder, C. & Lippincott-Schwartz, J. The fluorescence protease protection (FPP) assay to determine protein localization and membrane topology. Nat. Protoc. 1, 276–279 (2006).

    Article  CAS  Google Scholar 

  34. Gwack, Y. et al. Hair loss and defective T- and B-cell function in mice lacking ORAI1. Mol. Cell Biol. 28, 5209–5222 (2008).

    Article  CAS  Google Scholar 

  35. Cahalan, M. D. STIMulating store-operated Ca(2+) entry. Nat. Cell Biol. 11, 669–677 (2009).

    Article  CAS  Google Scholar 

  36. Putney, J. W. Jr. New molecular players in capacitative Ca2+ entry. J. Cell Sci. 120, 1959–1965 (2007).

    Article  CAS  Google Scholar 

  37. Lewis, R. S. The molecular choreography of a store-operated calcium channel. Nature 446, 284–287 (2007).

    Article  CAS  Google Scholar 

  38. Baba, Y. & Kurosaki, T. Physiological function and molecular basis of STIM1-mediated calcium entry in immune cells. Immunol. Rev. 231, 174–188 (2009).

    Article  CAS  Google Scholar 

  39. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  CAS  Google Scholar 

  40. Dolmetsch, R. E., Xu, K. & Lewis, R. S. Calcium oscillations increase the efficiency and specificity of gene expression. Nature 392, 933–936 (1998).

    Article  CAS  Google Scholar 

  41. Dolmetsch, R. E. & Lewis, R. S. Signaling between intracellular Ca2+ stores and depletion-activated Ca2+ channels generates [Ca2+]i oscillations in T lymphocytes. J. Gen. Physiol. 103, 365–388 (1994).

    Article  CAS  Google Scholar 

  42. Mullins, F. M., Park, C. Y., Dolmetsch, R. E. & Lewis, R. S. STIM1 and calmodulin interact with Orai1 to induce Ca2+-dependent inactivation of CRAC channels. Proc. Natl Acad. Sci. USA 106, 15495–15500 (2009).

    Article  CAS  Google Scholar 

  43. Bauer, M. C., O'Connell, D., Cahill, D. J. & Linse, S. Calmodulin binding to the polybasic C-termini of STIM proteins involved in store-operated calcium entry. Biochemistry 47, 6089–6091 (2008).

    Article  CAS  Google Scholar 

  44. Nakatani, Y. & Ogryzko, V. Immunoaffinity purification of mammalian protein complexes. Methods Enzymol. 370, 430–444 (2003).

    Article  CAS  Google Scholar 

  45. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003).

    Article  CAS  Google Scholar 

  46. Xie, J., Marusich, M. F., Souda, P., Whitelegge, J. & Capaldi, R. A. The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS Lett. 581, 3545–3549 (2007).

    Article  CAS  Google Scholar 

  47. Srikanth, S., Jung, H. J., Ribalet, B. & Gwack, Y. The intracellular loop of Orai1 plays a central role in fast inactivation of Ca2+ release-activated Ca2+ channels. J. Biol. Chem. 285, 5066–5075 (2010).

    Article  CAS  Google Scholar 

  48. Maruyama, K., Mikawa, T. & Ebashi, S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J. Biochem. 95, 511–519 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Kenneth Philipson for critical reading of this manuscript and kind suggestions on Ca2+ overlay experiments. We thank Bernard Ribalet for help with patch clamp experiments, Baljit Khakh for sharing equipments and Earl Homsher for helpful discussions. This work was supported by National Institute of Health grant AI-083432, Stein Oppenheimer Endowment Award, Cancer Research Coordinating Committee Award (Y.G.) and a fellowship from the American Heart Association (S.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.S. and Y.G. designed the research. S.S. and Y.G. carried out the experiments with technical help from H.J.J. K.D.K. performed and analysed Ca2+ binding assays and P.S. and J.W. carried out mass spectrometry. S.S. and Y.G. analysed the data and wrote the manuscript. Y.G. supervised the project.

Corresponding author

Correspondence to Yousang Gwack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srikanth, S., Jung, HJ., Kim, KD. et al. A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 12, 436–446 (2010). https://doi.org/10.1038/ncb2045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2045

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing