Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RhoL controls invasion and Rap1 localization during immune cell transmigration in Drosophila

Abstract

Human immune cells have to penetrate an endothelial barrier during their beneficial pursuit of infection and their destructive infiltration of tissues in autoimmune diseases. This transmigration requires Rap1 GTPase to activate integrin affinity1. We define a new model system for this process by demonstrating, with live imaging and genetics, that during embryonic development Drosophila melanogaster immune cells penetrate an epithelial, Drosophila E-cadherin (DE-cadherin)-based tissue barrier. A mutant in RhoL, a GTPase homologue that is specifically expressed in haemocytes, blocks this invasive step but not other aspects of guided migration. RhoL mediates integrin adhesion caused by Drosophila Rap1 overexpression and moves Rap1 away from a concentration in the cytoplasm to the leading edge during invasive migration. These findings indicate that a programmed migratory step during Drosophila development bears striking molecular similarities to vertebrate immune cell transmigration during inflammation, and identify RhoL as a new regulator of invasion, adhesion and Rap1 localization. Our work establishes the utility of Drosophila for identifying novel components of immune cell transmigration and for understanding the in vivo interplay of immune cells with the barriers they penetrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drosophila immune cells move into the tail during development by penetrating an epithelial barrier and carrying out chain migration.
Figure 2: Identification of the gene, rhoL, which is expressed in haemocytes and required to permit migration into the tail.
Figure 3: RhoL does not affect haemocyte actin structures or guidance, but is required to penetrate a cadherin-containing barrier for migration into the tail.
Figure 4: The Rap1 GEF Dizzy and the α-integrin Inflated are required for tail invasion.
Figure 5: RhoL is required for Rap1 to induce adhesion and relocalize from an intracellular cluster to the cell surface in haemocytes.

Similar content being viewed by others

References

  1. Abram, C. L. & Lowell, C. A. The ins and outs of leukocyte integrin signaling. Annu. Rev. Immunol. 2 7, 339–362 (2009).

    Article  Google Scholar 

  2. Etzioni, A., Doerschuk, C. M. & Harlan, J. M. Of man and mouse: leukocyte and endothelial adhesion molecule deficiencies. Blood 94, 3281–3288 (1999).

    CAS  PubMed  Google Scholar 

  3. Luster, A. D., Alon, R. & von Andrian, U. H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, J. V., Kang, S. S., Dustin, M. L. & McGavern, D. B. Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457, 191–195 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4, 741–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Katagiri, K., Imamura, M. & Kinashi, T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat. Immunol. 7, 919–928 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Evans, C. J., Hartenstein, V. & Banerjee, U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673–690 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Wood, W. & Jacinto, A. Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat. Rev. Mol. Cell Biol. 8, 542–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Babcock, D. T. et al. Circulating blood cells function as a surveillance system for damaged tissue in Drosophila larvae. Proc. Natl Acad. Sci. USA 105, 10017–10022 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stramer, B. et al. Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J. Cell Biol. 168, 567–573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wood, W., Faria, C. & Jacinto, A. Distinct mechanisms regulate haemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J. Cell Biol. 173, 405–416 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pastor-Pareja, J. C., Wu, M. & Xu, T. An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis. Mod. Mech. 1, 144–154 (2008).

    Article  Google Scholar 

  14. Bruckner, K. et al. The PDGF/VEGF receptor controls blood cell survival in Drosophila. Dev. Cell 7, 73–84 (2004).

    Article  PubMed  Google Scholar 

  15. Cho, N. K. et al. Developmental control of blood cell migration by the Drosophila VEGF pathway. Cell 108, 865–876 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  17. Murphy, A. M. & Montell, D. J. Cell type-specific roles for Cdc42, Rac, and RhoL in Drosophila oogenesis. J. Cell Biol. 133, 617–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Paladi, M. & Tepass, U. Function of Rho GTPases in embryonic blood cell migration in Drosophila. J. Cell Sci. 117, 6313–6326 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Page-McCaw, A., Serano, J., Sante, J. M. & Rubin, G. M. Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev. Cell 4, 95–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Srivastava, A., Pastor-Pareja, J. C., Igaki, T., Pagliarini, R. & Xu, T. Basement membrane remodeling is essential for Drosophila disc eversion and tumor invasion. Proc. Natl Acad. Sci. USA 104, 2721–2726 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tepass, U. et al. Shotgun encodes Drosophila E-cadherin and is preferentially required during cell rearrangement in the neuroectoderm and other morphogenetically active epithelia. Genes Dev. 10, 672–685 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Pacquelet, A. & Rorth, P. Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J. Cell Biol. 170, 803–812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huelsmann, S., Hepper, C., Marchese, D., Knoll, C. & Reuter, R. The PDZ-GEF dizzy regulates cell shape of migrating macrophages via Rap1 and integrins in the Drosophila embryo. Development 133, 2915–2924 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Bogaert, T., Brown, N. & Wilcox, M. The Drosophila PS2 antigen is an invertebrate integrin that, like the fibronectin receptor, becomes localized to muscle attachments. Cell 51, 929–940 (1987).

    Article  CAS  PubMed  Google Scholar 

  25. Tepass, U., Fessler, L. I., Aziz, A. & Hartenstein, V. Embryonic origin of haemocytes and their relationship to cell death in Drosophila. Development 120, 1829–1837 (1994).

    CAS  PubMed  Google Scholar 

  26. de Velasco, B., Mandal, L., Mkrtchyan, M. & Hartenstein, V. Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. Dev. Genes Evol. 216, 39–51 (2006).

    Article  PubMed  Google Scholar 

  27. Knox, A. L. & Brown, N. H. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science 295, 1285–1288 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bertrand, J. Y. et al. Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc. Natl Acad. Sci. USA 102, 134–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Menasche, G., Kliche, S., Bezman, N. & Schraven, B. Regulation of T-cell antigen receptor-mediated inside-out signalling by cytosolic adapter proteins and Rap1 effector molecules. Immunol. Rev. 218, 82–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Tepass, U. & Hartenstein, V. The development of cellular junctions in the Drosophila embryo. Dev. Biol. 161, 563–596 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Choi, E. Y., Santoso, S. & Chavakis, T. Mechanisms of neutrophil transendothelial migration. Front Biosci. 14, 1596–1605 (2009).

    Article  CAS  PubMed Central  Google Scholar 

  32. Mor, A., Dustin, M. L. & Philips, M. R. Small GTPases and LFA-1 reciprocally modulate adhesion and signaling. Immunol. Rev. 218, 114–125 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. de Toledo, M. et al. The GTP/GDP cycling of rho GTPase TCL is an essential regulator of the early endocytic pathway. Mol. Biol. Cell 14, 4846–4856 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawase, K. et al. GTP hydrolysis by the Rho family GTPase TC10 promotes exocytic vesicle fusion. Dev. Cell 11, 411–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    Article  PubMed  Google Scholar 

  36. Lehmann, R. & Tautz, D. In situ hybridization to RNA. Methods in cell biology 44, 575–598 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Jukam, P. Kunwar, A-M. Sudarov, and S. Wang for help during the GAL4 enhancer screen, and D. Demy for input. We thank all the people who shared their reagents: U. Heberlein, K. Brueckner, N. Perrimon, D. Montell, R. Reuter and A. Page-McCaw for stocks and T. Uemura, D. Branton, R, Dubreuil, H. Bellen, N. Lowe, D. Ryoo and J. Treisman for antibodies. We thank the Developmental Studies Hybridoma Bank developed with NICHD support and maintained by the University of Iowa for antibodies and the Bloomington Stock Center for flies. We are grateful for conversations with P. Rangan, P. Kunwar and many other members of the laboratory. We thank M. Dustin, S. Schwab and laboratory members for comments on the manuscript. We thank NICHD for supporting part of this work. R.L. is an investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Contributions

Project conception and planning were conducted by D.S. with guidance from R.L. D.S. performed and analysed all experiments except the following: M.H. participated in the screen, and produced all the data in Supplementary Information, Fig. S2a, b and d except the production and analysis of the extent of the XA12 excision and O.M. produced Fig. 4c and assisted in staining for Fig. 5h–i. Experimental interpretation was conducted by D.S., M.H. and R.L. The manuscript was written by D.S. and edited by R.L.

Corresponding author

Correspondence to Ruth Lehmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1502 kb)

Supplementary Information

Supplementary Movie 1 (MOV 17415 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2755 kb)

Supplementary Information

Supplementary Movie 3 (MOV 11101 kb)

Supplementary Information

Supplementary Movie 4 (MOV 2736 kb)

Supplementary Information

Supplementary Movie 5 (MOV 10777 kb)

Supplementary Information

Supplementary Movie 6 (MOV 9705 kb)

Supplementary Information

Supplementary Movie 7 (MOV 5555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siekhaus, D., Haesemeyer, M., Moffitt, O. et al. RhoL controls invasion and Rap1 localization during immune cell transmigration in Drosophila. Nat Cell Biol 12, 605–610 (2010). https://doi.org/10.1038/ncb2063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing