Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP

Abstract

The biogenesis, maintenance and function of primary cilia are controlled through intraflagellar transport (IFT) driven by two kinesin-2 family members, the heterotrimeric KIF3A/KIF3B/KAP complex and the homodimeric KIF17 motor1,2. How these motors and their cargoes gain access to the ciliary compartment is poorly understood. Here, we identify a ciliary localization signal (CLS) in the KIF17 tail domain that is necessary and sufficient for ciliary targeting. Similarities between the CLS and classic nuclear localization signals (NLSs) suggest that similar mechanisms regulate nuclear and ciliary import. We hypothesize that ciliary targeting of KIF17 is regulated by a ciliary-cytoplasmic gradient of the small GTPase Ran, with high levels of GTP-bound Ran (RanGTP) in the cilium. Consistent with this, cytoplasmic expression of GTP-locked Ran(G19V) disrupts the gradient and abolishes ciliary entry of KIF17. Furthermore, KIF17 interacts with the nuclear import protein importin-β2 in a manner dependent on the CLS and inhibited by RanGTP. We propose that Ran has a global role in regulating cellular compartmentalization by controlling the shuttling of cytoplasmic proteins into nuclear and ciliary compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The KIF17 CLS is necessary and sufficient for ciliary localization.
Figure 2: Ran is present in the ciliary compartment.
Figure 3: Fast upregulation of cytosolic RanGTP levels abolishes ciliary localization of KIF17.
Figure 4: Upregulation of cytosolic RanGTP levels prevents ciliary entry of KIF17.
Figure 5: KIF17 forms a complex with importin-β2 that is CLS- and RanGTP-dependent.

Similar content being viewed by others

References

  1. Silverman, M. A. & Leroux, M. R. Intraflagellar transport and the generation of dynamic, structurally and functionally diverse cilia. Trends Cell Biol. 19, 306–316 (2009).

    Article  CAS  Google Scholar 

  2. Scholey, J. M. Intraflagellar transport motors in cilia: moving along the cell's antenna. J. Cell Biol. 180, 23–29 (2008).

    Article  CAS  Google Scholar 

  3. Satir, P., Mitchell, D. R. & Jekely, G. How did the cilium evolve? Curr. Top. Dev. Biol. 85, 63–82 (2008).

    Article  CAS  Google Scholar 

  4. Gerdes, J. M., Davis, E. E. & Katsanis, N. The vertebrate primary cilium in development, homeostasis, and disease. Cell 137, 32–45 (2009).

    Article  CAS  Google Scholar 

  5. Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377–400 (2007).

    Article  CAS  Google Scholar 

  6. Scholey, J. M. & Anderson, K. V. Intraflagellar transport and cilium-based signaling. Cell 125, 439–442 (2006).

    Article  CAS  Google Scholar 

  7. Tobin, J. L. & Beales, P. L. The nonmotile ciliopathies. Genet. Med. 11, 386–402 (2009).

    Article  CAS  Google Scholar 

  8. Fliegauf, M., Benzing, T. & Omran, H. Mechanisms of disease - when cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880–893 (2007).

    Article  CAS  Google Scholar 

  9. Rosenbaum, J. L. & Witman, G. B. Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813–825 (2002).

    Article  CAS  Google Scholar 

  10. Ou, G. S., Blacque, O. E., Snow, J. J., Leroux, M. R. & Scholey, J. M. Functional coordination of intraflagellar transport motors. Nature 436, 583–587 (2005).

    Article  CAS  Google Scholar 

  11. Snow, J. J. et al. Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nat. Cell Biol. 6, 1109–1123 (2004).

    Article  CAS  Google Scholar 

  12. Insinna, C., Pathak, N., Perkins, B., Drummond, I. & Besharse, J. C. The homodimeric kinesin, Kif17, is essential for vertebrate photoreceptor sensory outer segment development. Dev. Biol. 316, 160–170 (2008).

    Article  CAS  Google Scholar 

  13. Jenkins, P. M. et al. Ciliary targeting of olfactory CNG channels requires the CNGB1b subunit and the kinesin-2 motor protein, KIF17. Curr. Biol. 16, 1211–1216 (2006).

    Article  CAS  Google Scholar 

  14. Insinna, C., Humby, M., Sedmak, T., Wolfrum, U. & Besharse, J. C. Different roles for KIF17 and kinesin II in photoreceptor development and maintenance. Dev. Dynam. 238, 2211–2222 (2009).

    Article  CAS  Google Scholar 

  15. Gherman, A., Davis, E. E. & Katsanis, N. The ciliary proteome database: an integrated community resource for the genetic and functional dissection of cilia. Nat. Genet. 38, 961–962 (2006).

    Article  CAS  Google Scholar 

  16. Gilula, N. B. & Satir, P. The ciliary necklace. A ciliary membrane specialization. J. Cell Biol. 53, 494–509 (1972).

    Article  CAS  Google Scholar 

  17. Luby-Phelps, K., Fogerty, J., Baker, S. A., Pazour, G. J. & Besharse, J. C. Spatial distribution of intraflagellar transport proteins in vertebrate photoreceptors. Vision Res. 48, 413–423 (2008).

    Article  CAS  Google Scholar 

  18. Deane, J. A., Cole, D. G., Seeley, E. S., Diener, D. R. & Rosenbaum, J. L. Localization of intraflagellar transport protein IFT52 identifies basal body transitional fibers as the docking site for IFT particles. Curr. Biol. 11, 1586–1590 (2001).

    Article  CAS  Google Scholar 

  19. Murrell, J. R. & Hunter, D. D. An olfactory sensory neuron line, Odora, properly targets olfactory proteins and responds to odorants. J. Neurosci. 19, 8260–8270 (1999).

    Article  CAS  Google Scholar 

  20. Jekely, G. & Arendt, D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28, 191–198 (2006).

    Article  CAS  Google Scholar 

  21. Devos, D. et al. Components of coated vesicles and nuclear pore complexes share a common molecular architecture. PLOS biol. 2, 2085–2093 (2004).

    Article  CAS  Google Scholar 

  22. Christensen, S. T., Pedersen, L. B., Schneider, L. & Satir, P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 8, 97–109 (2007).

    Article  CAS  Google Scholar 

  23. Lee, B. J. et al. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126, 543–558 (2006).

    Article  CAS  Google Scholar 

  24. Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 8, 195–208 (2007).

    Article  CAS  Google Scholar 

  25. Liu, Q. et al. The proteome of the mouse photoreceptor sensory cilium complex. Mol. Cell. Proteomics 6, 1299–1317 (2007).

    Article  CAS  Google Scholar 

  26. Richards, S. A., Lounsbury, K. M. & Macara, I. G. The C terminus of the nuclear RAN/TC4 GTPase stabilizes the GDP-bound state and mediates interactions with RCC1, Ran-GAP, and HTF9A/RanBP1. J. Biol. Chem. 270, 14405–14411 (1995).

    Article  CAS  Google Scholar 

  27. Lounsbury, K. M., Richards, S. A., Carey, K. L. & Macara, I. G. Mutations within the Ran/TC4 GTPase - Effects on regulatory factor interactions and subcellular localization. J. Biol. Chem. 271, 32834–32841 (1996).

    Article  CAS  Google Scholar 

  28. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G.L. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  Google Scholar 

  29. Maynard-Smith, L. A., Chen, L. C., Banaszynski, L. A., Ooi, A. G.L. & Wandless, T. J. A directed approach for engineering conditional protein stability using biologically silent small molecules. J. Biol. Chem. 282, 24866–24872 (2007).

    Article  CAS  Google Scholar 

  30. Schoeber, J. P. H. et al. Conditional fast expression and function of multimeric TRPV5 channels using Shield-1. Am. J. Physiol. Renal Physiol. 296, F204–F211 (2009).

    Article  CAS  Google Scholar 

  31. Weis, K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).

    Article  CAS  Google Scholar 

  32. Fan, S. L. et al. A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. J. Cell Biol. 178, 387–398 (2007).

    Article  CAS  Google Scholar 

  33. Ems-McClung, S. C., Zheng, Y. X. & Walczak, C. E. Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol. Biol. Cell 15, 46–57 (2004).

    Article  CAS  Google Scholar 

  34. Tahara, K. et al. Importin-beta and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J. Cell. Biol. 180, 493–506 (2008).

    Article  CAS  Google Scholar 

  35. Mazelova, J. et al. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 28, 183–192 (2009).

    Article  CAS  Google Scholar 

  36. Geng, L. et al. Polycystin-2 traffics to cilia independently of polycystin-1 by using an N-terminal RVxP motif. J. Cell. Sci. 119, 1383–1395 (2006).

    Article  CAS  Google Scholar 

  37. Pazour, G. J. & Bloodgood, R. A. Targeting proteins to the ciliary membrane. Curr. Top. Dev. Biol. 85, 115–149 (2008).

    Article  CAS  Google Scholar 

  38. Hunnicutt, G. R., Kosfiszer, M. G. & Snell, W. J. Cell body and flagellar agglutinins in Chlamydomonas reinhardtii - the cell body plasma-membrane is a reservoir for agglutinins whose migration to the flagella is regulated by a functional barrier. J. Cell. Biol. 111, 1605–1616 (1990).

    Article  CAS  Google Scholar 

  39. Casanova, J. E. et al. Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 47–61 (1999).

    Article  CAS  Google Scholar 

  40. Morris, R. L. et al. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos. Dev. Biol. 274, 56–69 (2004).

    Article  CAS  Google Scholar 

  41. Cai, D. W., Hoppe, A. D., Swanson, J. A. & Verhey, K. J. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells. J. Cell. Biol. 176, 51–63 (2007).

    Article  CAS  Google Scholar 

  42. Mayer, U. et al. Proteomic analysis of a membrane preparation from rat olfactory sensory cilia. Chem. Senses 33, 145–162 (2008).

    Article  CAS  Google Scholar 

  43. Mayer, U. et al. The proteome of rat olfactory sensory cilia. Proteomics 9, 322–334 (2009).

    Article  CAS  Google Scholar 

  44. Davies, S. & Forge, A. Preparation of the mammalian organ of Corti for scanning electron-microscopy. J. Microsc-Oxford 147, 89–101 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01GM070862 and R01GM083254 (to K.J.V.), R01DC009606 (to J.R.M.), R01DK084725 (to B.M.), and T32GM007767 and T32DC00011 (to P.M.J.). Work was also supported by NRSAs F32GM089034 (to J.F.D.) and F31DC009524 (to P.M.J.). H.L.K. is supported as a Barbour Fellow at the University of Michigan. pGEX-Ran plasmids were a kind gift from Brian Burke (University of Florida) and rabbit anti-RanGTP antibody was a kind gift from Ian Macara (University of Virginia).

Author information

Authors and Affiliations

Authors

Contributions

J.F.D., H.L.K, P.M.J., S.F. and Y.N.T. performed experiments. J.F.D., H.L.K., P.M.J., J.R.M. and K.J.V. designed experiments. All authors contributed to helpful discussions shaping the aims of the project. J.F.D and K.J.V. wrote the manuscript, with all authors providing detailed comments and suggestions. K.J.V. directed the project.

Corresponding author

Correspondence to Kristen J. Verhey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dishinger, J., Kee, H., Jenkins, P. et al. Ciliary entry of the kinesin-2 motor KIF17 is regulated by importin-β2 and RanGTP. Nat Cell Biol 12, 703–710 (2010). https://doi.org/10.1038/ncb2073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing