Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasma membrane contributes to the formation of pre-autophagosomal structures

A Corrigendum to this article was published on 01 October 2010

This article has been updated

Abstract

Autophagy is a catabolic process in which lysosomes degrade intracytoplasmic contents transported in double-membraned autophagosomes. Autophagosomes are formed by the elongation and fusion of phagophores, which derive from pre-autophagosomal structures. The membrane origins of autophagosomes are unclear and may involve multiple sources, including the endoplasmic reticulum and mitochondria. Here we show in mammalian cells that the heavy chain of clathrin interacts with Atg16L1 and is involved in the formation of Atg16L1-positive early autophagosome precursors. Atg16L1 associated with clathrin-coated structures, and inhibition of clathrin-mediated internalization decreased the formation of both Atg16L1-positive precursors and mature autophagosomes. We tested and demonstrated that the plasma membrane contributes directly to the formation of early Atg16L1-positive autophagosome precursors. This may be particularly important during periods of increased autophagosome formation, because the plasma membrane may serve as a large membrane reservoir that allows cells periods of autophagosome synthesis at levels many-fold higher than under basal conditions, without compromising other processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Atg16L1 interacts with clathrin heavy chain.
Figure 2: Inhibition of clathrin-mediated endocytosis decreases autophagosome formation.
Figure 3: Influence of clathrin-mediated endocytosis on Atg16L1-positive autophagosome precursors.
Figure 4: Atg16L1 vesicles are found close to the plasma membrane.
Figure 5: Atg16L1 vesicles co-localize with vesicles labelled with cholera toxin subunit B.
Figure 6: Analysis of wild-type and deletion mutants of Atg16L1.
Figure 7: Plasma membrane contributes to Atg16L1-positive autophagosome precursors.
Figure 8: Effect of endocytic vesicle scission on phagophore formation.

Similar content being viewed by others

Change history

  • 16 September 2010

    In the version of this article initially published online, the cholera toxin in Fig. 8d was placed outside the internalised vesicles instead of inside. This error has been corrected in both the HTML and PDF versions of the article.

References

  1. Hailey, D. W. et al. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656–667 (2010).

    Article  CAS  Google Scholar 

  2. Axe, E. L. et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell. Biol. 182, 685–701 (2008).

    Article  CAS  Google Scholar 

  3. Hayashi-Nishino, M. et al. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11, 1433–1437 (2009).

    Article  CAS  Google Scholar 

  4. Yla-Anttila, P., Vihinen, H., Jokitalo, E. & Eskelinen, E. L. 3D tomography reveals connections between the phagophore and endoplasmic reticulum. Autophagy 5, 1180–1185 (2009).

    Article  Google Scholar 

  5. Ohsumi, Y. & Mizushima, N. Two ubiquitin-like conjugation systems essential for autophagy. Semin. Cell Dev. Biol. 15, 231–236 (2004).

    Article  CAS  Google Scholar 

  6. Mizushima, N. et al. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12–Apg5 conjugate. J. Cell Sci. 116, 1679–1688 (2003).

    Article  CAS  Google Scholar 

  7. Hanada, T. et al. The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298–37302 (2007).

    Article  CAS  Google Scholar 

  8. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  CAS  Google Scholar 

  9. Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  Google Scholar 

  10. Eskelinen, E. L. Maturation of autophagic vacuoles in mammalian cells. Autophagy 1, 1–10 (2005).

    Article  CAS  Google Scholar 

  11. Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C. J. & Rubinsztein, D. C. Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J. Cell Sci. 121, 1649–1660 (2008).

    Article  CAS  Google Scholar 

  12. Razi, M., Chan, E. Y. & Tooze, S. A. Early endosomes and endosomal coatomer are required for autophagy. J. Cell. Biol. 185, 305–321 (2009).

    Article  CAS  Google Scholar 

  13. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  Google Scholar 

  14. Rubinsztein, D. C. et al. In search of an 'autophagomometer'. Autophagy 5, 585–589 (2009).

    Article  CAS  Google Scholar 

  15. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

    Article  CAS  Google Scholar 

  16. Kimura, S., Noda, T. & Yoshimori, T. Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452–460 (2007).

    Article  CAS  Google Scholar 

  17. Sarkar, S., Korolchuk, V., Renna, M., Winslow, A. & Rubinsztein, D. C. Methodological considerations for assessing autophagy modulators: a study with calcium phosphate precipitates. Autophagy 5, 307–313 (2009).

    Article  CAS  Google Scholar 

  18. Sarkar, S., Davies, J. E., Huang, Z., Tunnacliffe, A. & Rubinsztein, D. C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282, 5641–5652 (2007).

    Article  CAS  Google Scholar 

  19. Cooper, J. K. et al. Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum. Mol. Genet. 7, 783–790 (1998).

    Article  CAS  Google Scholar 

  20. Lunkes, A. & Mandel, J. L. A cellular model that recapitulates major pathogenic steps of Huntington's disease. Hum. Mol. Genet. 7, 1355–1361 (1998).

    Article  CAS  Google Scholar 

  21. Wyttenbach, A. et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc. Natl Acad. Sci. USA 97, 2898–2903 (2000).

    Article  CAS  Google Scholar 

  22. Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  Google Scholar 

  23. Sarkar, S. et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell. Biol. 170, 1101–1111 (2005).

    Article  CAS  Google Scholar 

  24. Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295–305 (2008).

    Article  CAS  Google Scholar 

  25. Bastiaens, P. I., Majoul, I. V., Verveer, P. J., Soling, H. D. & Jovin, T. M. Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J. 15, 4246–4253 (1996).

    Article  CAS  Google Scholar 

  26. Puri, C. et al. Relationships between EGFR signaling-competent and endocytosis-competent membrane microdomains. Mol. Biol. Cell 16, 2704–2718 (2005).

    Article  CAS  Google Scholar 

  27. Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).

    Article  CAS  Google Scholar 

  28. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  Google Scholar 

  29. Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell. Biol. 143, 501–510 (1998).

    Article  CAS  Google Scholar 

  30. Juhasz, G. & Neufeld, T. P. Autophagy: a forty-year search for a missing membrane source. PLoS Biol. 4, e36 (2006).

    Article  Google Scholar 

  31. Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl Acad. Sci. USA 102, 2760–2765 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Luzio, V. Korolchuk, F. Menzies and S. Sarkar, Cambridge Institute for Medical Research, Cambridge for helpful comments, and for funding from a Wellcome Trust Senior Clinical Research Fellowship (D.C.R.), a MRC Programme grant (D.C.R.), Cancer Research UK (C.P.). We thank M. Mizuguchi, Toyama Medical and Pharmaceutical University, Toyama, for hLC3B; R. Tsien, University of California, San Diego, for tdTomato; R. Xavier, Massachusetts General Hospital, Boston, for 3 × Flag–Atg16L1; T. Yoshimori, Osaka University, Osaka, for cyan fluorescent protein (CFP)–LC3 and GFP–Atg5; B. Beaumelle, Université Montpellier 2, France, for dominant-negative dynamin II; T. Meyer, Stanford University Medical Center, Stanford, for PLC(PH); and M. Harbour, Cambridge Institute for Medical Research, Cambridge, for help with matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI–TOF MS).

Author information

Authors and Affiliations

Authors

Contributions

B.R., K.M., L.J. and D.C.R. designed and analysed the experiments. B.R., K.M. and L.J. performed the experiments. C.P. performed all the immunogold electron microscopy analysis. B.R. and D.C.R. wrote the manuscript. D.C.R. supervised the project.

Corresponding author

Correspondence to David C. Rubinsztein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1606 kb)

Supplementary Information

Supplementary Movie 1 (MOV 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, B., Moreau, K., Jahreiss, L. et al. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat Cell Biol 12, 747–757 (2010). https://doi.org/10.1038/ncb2078

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2078

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing