Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A spindle-like apparatus guides bacterial chromosome segregation

Abstract

Until recently, a dedicated mitotic apparatus that segregates newly replicated chromosomes into daughter cells was believed to be unique to eukaryotic cells. Here we demonstrate that the bacterium Caulobacter crescentus segregates its chromosome using a partitioning (Par) apparatus that has surprising similarities to eukaryotic spindles. We show that the C. crescentus ATPase ParA forms linear polymers in vitro and assembles into a narrow linear structure in vivo. The centromere-binding protein ParB binds to and destabilizes ParA structures in vitro. We propose that this ParB-stimulated ParA depolymerization activity moves the centromere to the opposite cell pole through a burnt bridge Brownian ratchet mechanism. Finally, we identify the pole-specific TipN protein1,2 as a new component of the Par system that is required to maintain the directionality of DNA transfer towards the new cell pole. Our results elucidate a bacterial chromosome segregation mechanism that features basic operating principles similar to eukaryotic mitotic machines, including a multivalent protein complex at the centromere that stimulates the dynamic disassembly of polymers to move chromosomes into daughter compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ParA and ParB dynamics in vivo and ParA polymerization in vitro suggest a retracting polymeric ParA structure guides centromere segregation.
Figure 2: Mutational and biochemical analysis of C. crescentus ParA.
Figure 3: ParB in complex with parS drives the dynamics of ParA structures on DNA.
Figure 4: TipN confers new pole-specific directionality to Par-mediated DNA transfer through direct interaction with ParA.
Figure 5: A burnt-bridge Brownian ratchet mechanism for Par-mediated chromosome segregation in C. crescentus.

Similar content being viewed by others

References

  1. Lam, H., Schofield, W. B. & Jacobs-Wagner, C. A landmark protein essential for establishing and perpetuating the polarity of a bacterial cell. Cell 124, 1011–1023 (2006).

    Article  CAS  Google Scholar 

  2. Huitema, E., Pritchard, S., Matteson, D., Radhakrishnan, S. K. & Viollier, P. H. Bacterial birth scar proteins mark future flagellum assembly site. Cell 124, 1025–1037 (2006).

    Article  CAS  Google Scholar 

  3. Gerdes, K., Moller-Jensen, J. & Bugge Jensen, R. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37, 455–466 (2000).

    Article  CAS  Google Scholar 

  4. Mohl, D. A., Easter, J., Jr & Gober, J. W. The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus. Mol. Microbiol. 42, 741–755 (2001).

    Article  CAS  Google Scholar 

  5. Mohl, D. A. & Gober, J. W. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88, 675–684 (1997).

    CAS  PubMed  Google Scholar 

  6. Toro, E., Hong, S. H., McAdams, H. H. & Shapiro, L. Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc. Natl Acad. Sci. USA 105, 15435–15440 (2008).

    Article  CAS  Google Scholar 

  7. Bowman, G. R. et al. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol. Microbiol. 76, 173–189.

    Article  CAS  Google Scholar 

  8. Bowman G. R. et al. Polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134, 945–955 (2008).

    Article  CAS  Google Scholar 

  9. Ebersbach G, B. A., Jensen GJ, Jacobs-Wagner C A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134, 956–968 (2008).

    Article  Google Scholar 

  10. Lim, G. E., Derman, A. I. & Pogliano, J. Bacterial DNA segregation by dynamic SopA polymers. Proc. Natl Acad. Sci. USA 102, 17658–17663 (2005).

    Article  CAS  Google Scholar 

  11. Bouet, J. Y., Ah-Seng, Y., Benmeradi, N. & Lane, D. Polymerization of SopA partition ATPase: regulation by DNA binding and SopB. Mol. Microbiol. 63, 468–481 (2007).

    Article  CAS  Google Scholar 

  12. Fogel, M. A. & Waldor, M. K. A dynamic, mitotic-like mechanism for bacterial chromosome segregation. Genes Dev. 20, 3269–3282 (2006).

    Article  CAS  Google Scholar 

  13. Hatano, T., Yamaichi, Y. & Niki, H. Oscillating focus of SopA associated with filamentous structure guides partitioning of F plasmid. Mol. Microbiol. 64, 1198–1213 (2007).

    Article  CAS  Google Scholar 

  14. Leonard, T. A., Moller-Jensen, J. & Lowe, J. Towards understanding the molecular basis of bacterial DNA segregation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 523–535 (2005).

    Article  CAS  Google Scholar 

  15. Ringgaard, S., van Zon, J., Howard, M. & Gerdes, K. Movement and equipositioning of plasmids by ParA filament disassembly. Proc. Natl Acad. Sci. USA 106, 19369–19374 (2009).

    Article  CAS  Google Scholar 

  16. Barilla, D., Rosenberg, M. F., Nobbmann, U. & Hayes, F. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF. EMBO J. 24, 1453–1464 (2005).

    Article  CAS  Google Scholar 

  17. Ebersbach, G. et al. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol. Microbiol. 61, 1428–1442 (2006).

    Article  CAS  Google Scholar 

  18. Leonard, T. A., Butler, P. J. & Lowe, J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimmer — a conserved biological switch. EMBO J. 24, 270–282 (2005).

    Article  CAS  Google Scholar 

  19. Pratto, F. et al. Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Res. 36, 3676–3689 (2008).

    Article  CAS  Google Scholar 

  20. Batt, S. M., Bingle, L. E., Dafforn, T. R. & Thomas, C. M. Bacterial genome partitioning: N-terminal domain of IncC protein encoded by broad-host-range plasmid RK2 modulates oligomerisation and DNA binding. J. Mol. Biol. 385, 1361–1374 (2009).

    Article  CAS  Google Scholar 

  21. Ebersbach, G. & Gerdes, K. The double par locus of virulence factor pB171: DNA segregation is correlated with oscillation of ParA. Proc. Natl Acad. Sci. USA 98, 15078–15083 (2001).

    Article  CAS  Google Scholar 

  22. Ebersbach, G. & Gerdes, K. Bacterial mitosis: partitioning protein ParA oscillates in spiral-shaped structures and positions plasmids at mid-cell. Mol. Microbiol. 52, 385–398 (2004).

    Article  CAS  Google Scholar 

  23. Quisel, J. D., Lin, D. C. & Grossman, A. D. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell 4, 665–672 (1999).

    Article  CAS  Google Scholar 

  24. Marston, A. L. & Errington, J. Dynamic movement of the ParA-like Soj protein of B. subtilis and its dual role in nucleoid organization and developmental regulation. Mol. Cell 4, 673–682 (1999).

    Article  CAS  Google Scholar 

  25. Castaing, J. P., Bouet, J. Y. & Lane, D. F plasmid partition depends on interaction of SopA with non-specific DNA. Mol. Microbiol. 70, 1000–1011 (2008).

    CAS  PubMed  Google Scholar 

  26. Barilla, D., Carmelo, E. & Hayes, F. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif. Proc. Natl Acad. Sci. USA 104, 1811–1816 (2007).

    Article  CAS  Google Scholar 

  27. Easter, J., Jr & Gober, J. W. ParB-stimulated nucleotide exchange regulates a switch in functionally distinct ParA activities. Mol. Cell 10, 427–434 (2002).

    Article  CAS  Google Scholar 

  28. Fung, E., Bouet, J. Y. & Funnell, B. E. Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J. 20, 4901–4911 (2001).

    Article  CAS  Google Scholar 

  29. Murray, H. & Errington, J. Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA. Cell 135, 74–84 (2008).

    Article  CAS  Google Scholar 

  30. Hester, C. M. & Lutkenhaus, J. Soj (ParA) DNA binding is mediated by conserved arginines and is essential for plasmid segregation. Proc. Natl Acad. Sci. USA 104, 20326–20331 (2007).

    Article  CAS  Google Scholar 

  31. Thanbichler, M. & Shapiro, L. MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126, 147–162 (2006).

    Article  CAS  Google Scholar 

  32. Gruber, S. & Errington, J. Recruitment of condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137, 685–696 (2009).

    Article  CAS  Google Scholar 

  33. Charles, M., Perez, M., Kobil, J. H. & Goldberg, M. B. Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio. Proc. Natl Acad. Sci. USA 98, 9871–9876 (2001).

    Article  CAS  Google Scholar 

  34. Breier, A. M. & Grossman, A. D. Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol. Microbiol. 64, 703–718 (2007).

    Article  CAS  Google Scholar 

  35. Rodionov, O., Lobocka, M. & Yarmolinsky, M. Silencing of genes flanking the P1 plasmid centromere. Science 283, 546–549 (1999).

    Article  CAS  Google Scholar 

  36. Fiebig, A., Keren, K. & Theriot, J. A. Fine-scale time-lapse analysis of the biphasic, dynamic behaviour of the two Vibrio cholerae chromosomes. Mol. Microbiol. 60, 1164–1178 (2006).

    Article  CAS  Google Scholar 

  37. Viollier, P. H. et al. Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. Proc. Natl Acad. Sci. USA 101, 9257–9262 (2004).

    Article  CAS  Google Scholar 

  38. Tanaka, T. U. & Desai, A. Kinetochore-microtubule interactions: the means to the end. Curr. Opin. Cell Biol. 20, 53–63 (2008).

    Article  CAS  Google Scholar 

  39. Deich, J., Judd, E. M., McAdams, H. H. & Moerner, W. E. Visualization of the movement of single histidine kinase molecules in live Caulobacter cells. Proc. Natl Acad. Sci. USA 101, 15921–15926 (2004).

    Article  CAS  Google Scholar 

  40. Biteen, J. S. et al. Super-resolution imaging in live Caulobacter crescentus cells using photo-switchable EYFP. Nature Methods (2008).

  41. Thanbichler, M., Iniesta, A.A., Shapiro, L. A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res. 35, e137 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jimmy Blair for assistance with modelling of ParA mutants, and critical reading of the manuscript; and Grant Bowman, Erin Goley and Julie Biteen for technical advice. We thank Jian Zhu and Thomas Earnest for providing purified 6His–ParB. This work is supported by National Institutes of Health grants R01 GM51426 R24 and GM073011-04d to L.S., NIH/NIGMS fellowship F32GM088966-1 to J.P., NIH/NIGMS award R01GM086196-2 to W.E.M., the Smith Stanford Graduate Fellowship to E.T., and a Helen Hay Whitney postdoctoral fellowship to E.G. This work was also supported by the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

J.P., S.L., W.E.M. and L.S. designed the research; J.P. performed C. crescentus genetic, epifluorescence microscopy and biochemical experiments; S.L. performed single molecule imaging and data analysis; E.G. purified native ParA and performed ParA light-scattering experiments; E.T. designed ParA/DNA SPR experiments and performed time-lapse microscopy experiments on ΔtipN strains; M.E. performed SPR experiments and analysis; L.C. performed ParA negative-stain electron microscopy imaging; W.E.M. and L.S. supervised the study; J.P., S.L., W.E.M. and L.S. wrote the paper.

Corresponding author

Correspondence to Lucy Shapiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ptacin, J., Lee, S., Garner, E. et al. A spindle-like apparatus guides bacterial chromosome segregation. Nat Cell Biol 12, 791–798 (2010). https://doi.org/10.1038/ncb2083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2083

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology