Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

GAPDH mediates nitrosylation of nuclear proteins

Abstract

S-nitrosylation of proteins by nitric oxide is a major mode of signalling in cells1. S-nitrosylation can mediate the regulation of a range of proteins, including prominent nuclear proteins, such as HDAC2 (ref. 2) and PARP1 (ref. 3). The high reactivity of the nitric oxide group with protein thiols, but the selective nature of nitrosylation within the cell, implies the existence of targeting mechanisms. Specificity of nitric oxide signalling is often achieved by the binding of nitric oxide synthase (NOS) to target proteins, either directly4 or through scaffolding proteins such as PSD-95 (ref. 5) and CAPON6. As the three principal isoforms of NOS—neuronal NOS (nNOS), endothelial NOS (eNOS) and inducible NOS (iNOS) —are primarily non-nuclear, the mechanisms by which nuclear proteins are selectively nitrosylated have been elusive. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is physiologically nitrosylated at its Cys 150 residue. Nitrosylated GAPDH (SNO–GAPDH) binds to Siah1, which possesses a nuclear localization signal, and is transported to the nucleus7. Here, we show that SNO–GAPDH physiologically transnitrosylates nuclear proteins, including the deacetylating enzyme sirtuin-1 (SIRT1), histone deacetylase-2 (HDAC2) and DNA-activated protein kinase (DNA-PK). Our findings reveal a novel mechanism for targeted nitrosylation of nuclear proteins and suggest that protein–protein transfer of nitric oxide groups may be a general mechanism in cellular signal transduction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SNO–GAPDH interacts with SIRT1 near its nitrosylated Cys 150 residue.
Figure 2: Nuclear SNO–GAPDH mediates nitrosylation of SIRT1 through transnitrosylation.
Figure 3: SNO–GAPDH mediates inhibition of SIRT1 enzymatic activity by nitric oxide.
Figure 4: Identification of HDAC2 and DNA-PK as nuclear targets of SNO–GAPDH mediated transnitrosylation.

Similar content being viewed by others

References

  1. Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nature Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  2. Nott, A., Watson, P. M., Robinson, J. D., Crepaldi, L. & Riccio, A. S-nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons. Nature 455, 411–415 (2008).

    Article  CAS  Google Scholar 

  3. Yu, Z., Kuncewicz, T., Dubinsky, W. P. & Kone, B. C. Nitric oxide-dependent negative feedback of PARP-1 trans-activation of the inducible nitric-oxide synthase gene. J. Biol. Chem. 281, 9101–9109 (2006).

    Article  CAS  Google Scholar 

  4. Kim, S. F., Huri, D. A. & Snyder, S. H. Inducible nitric oxide synthase binds, S-nitrosylates and activates cyclooxygenase-2. Science 310, 1966–1970 (2005).

    Article  CAS  Google Scholar 

  5. Lipton, S. A. et al. Cysteine regulation of protein function—as exemplified by NMDA-receptor modulation. Trends Neurosci. 25, 474–480 (2002).

    Article  CAS  Google Scholar 

  6. Fang, M. et al. Dexras1: a G protein specifically coupled to neuronal nitric oxide synthase via CAPON. Neuron 28, 183–193 (2000).

    Article  CAS  Google Scholar 

  7. Hara, M. R. et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 7, 665–674 (2005).

    Article  CAS  Google Scholar 

  8. Sen, N. et al. Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat. Cell Biol. 10, 866–873 (2008).

    Article  CAS  Google Scholar 

  9. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  Google Scholar 

  10. Haigis, M. C. & Guarente, L. P. Mammalian sirtuins—emerging roles in physiology, aging and calorie restriction. Genes Dev. 20, 2913–2921 (2006).

    Article  CAS  Google Scholar 

  11. Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P. & Snyder S. H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat. Cell Biol. 3, 193–197 (2001).

    Article  CAS  Google Scholar 

  12. Chang, K., Shimizu, N., Fukushima, Y., Martyn, J. & Kaneki, M. iNOS inactivates Sirt1, a key regulator of stress resistance and metabolism, by S-Nitrosylation. 2006 Annual Meeting American Society of Anesthesiologists conference abstract, A1067 (2006).

    Google Scholar 

  13. Chang, K., Shimizu, N., Fukushima, Y., Martyn, J. & Kaneki, M. Inducible nitric oxide synthase-mediated p53 activation and apoptosis in muscle after burn injury. 2007 Annual Meeting American Society of Anesthesiologists conference abstract, A1856 (2007).

    Google Scholar 

  14. Chen, L. et al. Dual role of Zn2+ in maintaining structural integrity and suppressing deacetylase activity of SIRT1. J. Inorg. Biochem. 104, 180–185 (2010).

    Article  CAS  Google Scholar 

  15. Rodgers, J. T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  Google Scholar 

  16. Lerin, C. et al. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metab. 3, 429–438 (2006).

    Article  CAS  Google Scholar 

  17. Rhee, J. et al. Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc. Natl Acad. Sci. USA 100, 4012–4017 (2003).

    Article  CAS  Google Scholar 

  18. Forrester, M. T. et al. Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat. Biotechnol. 27, 557–559 (2009).

    Article  CAS  Google Scholar 

  19. Pawloski, J. R., Hess, D. T. & Stamler, J. S. Export by red blood cells of nitric oxide bioactivity. Nature 409, 622–626 (2001).

    Article  CAS  Google Scholar 

  20. Mitchell, D. A. & Marletta, M. A. Thioredoxin catalyzes the S-nitrosylation of the caspase-3 active site cysteine. Nat. Chem. Biol. 1, 154–158 (2005).

    Article  CAS  Google Scholar 

  21. Mitchell, D. A., Morton, S. U., Fernhoff, N. B. & Marletta, M. A. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc. Natl Acad. Sci. USA 104, 11609–11614 (2007).

    Article  CAS  Google Scholar 

  22. Benhar, M., Forrester, M. T., Hess, D. T. & Stamler, J. S. Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320, 1050–1054 (2008).

    Article  CAS  Google Scholar 

  23. Nakamura, T. et al. Transnitrosylation of XIAP regulates caspase-dependent neuronal cell death. Mol. Cell 39, 184–195 (2010).

    Article  CAS  Google Scholar 

  24. Giordano, A. et al. Evidence for a functional nitric oxide synthase system in brown adipocyte nucleus. FEBS Lett. 514, 135–140 (2002).

    Article  CAS  Google Scholar 

  25. Gobeil, F. et al. Nitric oxide signaling via nuclearized endothelial nitric-oxide synthase modulates expression of the immediate early genes iNOS and mPGES-1. J. Biol. Chem. 281, 16058–16067 (2006).

    Article  CAS  Google Scholar 

  26. Grasselli, A. et al. Estrogen receptor-α and endothelial nitric oxide synthase nuclear complex regulates transcription of human telomerase. Circ. Res. 103, 34–42 (2008).

    Article  CAS  Google Scholar 

  27. Dudzinski, D. M. & Michel, T. Life history of eNOS: partners and pathways. Cardiovasc. Res. 75, 247–260 (2007).

    Article  CAS  Google Scholar 

  28. Jagnandan, D., Sessa, W. C. & Fulton, D. Intracellular location regulates calcium–calmodulin-dependent activation of organelle-restricted eNOS. Am. J. Physiol. Cell Physiol. 289, C1024–C1033 (2005).

    Article  CAS  Google Scholar 

  29. Rodgers, J. T., Lerin, C., Gerhart-Hines, Z. & Puigserver, P. Metabolic adaptations through the PGC-1α and SIRT1 pathways. FEBS Lett. 582, 46–53 (2008).

    Article  CAS  Google Scholar 

  30. Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    Article  CAS  Google Scholar 

  31. Lagouge, M. et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 1109–1122 (2006).

    Article  CAS  Google Scholar 

  32. Hotamisligil, G. S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  Google Scholar 

  33. Schmidt, H. W. & Walter, U. NO at work. Cell 78, 919–925 (1994).

    Article  CAS  Google Scholar 

  34. Marshall, H. E. & Stamler, J. S. Inhibition of NF-κB by S-nitrosylation. Biochemistry 40, 1688–1693 (2001).

    Article  CAS  Google Scholar 

  35. Yasinska, I. M. & Sumbayev, V. V. S-nitrosation of Cys 800 of HIF-1α protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett. 549, 105–109 (2003).

    Article  CAS  Google Scholar 

  36. Zheng, L., Roeder, R. G. & Luo, Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114, 255–266 (2003).

    Article  CAS  Google Scholar 

  37. Meyer-Siegler, K., Rahman-Mansur, N., Wurzer, J. C. & Sirover, M. A. Proliferative dependent regulation of the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in human cells. Carcinogenesis 13, 2127–2132 (1992).

    Article  CAS  Google Scholar 

  38. Singh, R. & Green, M. R. Sequence-specific binding of transfer RNA by glyceraldehydes-3-phosphate dehydrogenase. Science 259, 365–368 (1993).

    Article  CAS  Google Scholar 

  39. Zhou, Y. et al. The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol. Cancer Res. 6, 1375–1384 (2008).

    Article  CAS  Google Scholar 

  40. North, B. J., Schwer, B., Ahuja, N., Marshall, B. & Verdin, E. Preparation of enzymatically active recombinant class III protein deacetylases. Methods 36, 338–345 (2005).

    Article  CAS  Google Scholar 

  41. Jaffrey, S. R. & Snyder, S. H. The biotin switch method for the detection of S-nitrosylated proteins. Science STKE 86, PL1 (2001).

    Google Scholar 

  42. Parsons, X. H., Garcia, S. N., Pillus, L. & Kadonaga, J. T. Histone deacetylation by Sir2 generates a transcriptionally repressed nucleoprotein complex. Proc. Natl Acad. Sci. USA 100, 1609–1614 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Koldobskiy, B. Selvakumar, S.F. Kim, P. Kim, K. Werner and all members of the Snyder laboratory for insight and discussion. We thank P. Puigserver for SIRT1 and PGC1α plasmids. We thank B. Ziegler for organizing the manuscript. This work was supported by USPHS grant DA-000266 and Research Scientist Award DA-00074 to SHS.

Author information

Authors and Affiliations

Authors

Contributions

M.D.K. designed and performed most of the experiments, analysed the data, prepared the figures, helped write the manuscript and contributed to project design. N.S. performed experiments investigating the effects of GAPDH mutants on SIRT1 nitrosylation in intact cells, performed the GAPDH glycolytic activity assay and the luciferase reporter assay, and analysed the data and prepared the figures from these experiments. M.R.H. identified the physical interaction between GAPDH and SIRT1. K.R.J. identified S-nitrosylation of SIRT1, helped with SIRT1 assay design and prepared constructs. J.V.K.N. performed some in vitro binding and enzyme activity assays. A.M.S. performed site-directed mutagenesis and prepared plasmids. L.L. helped perform some experiments. L.D.H. generated neuronal cultures. S.H.S. designed and supervised the project, wrote the manuscript and provided financial support.

Corresponding author

Correspondence to Solomon H. Snyder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 922 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kornberg, M., Sen, N., Hara, M. et al. GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol 12, 1094–1100 (2010). https://doi.org/10.1038/ncb2114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing