Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A cytoplasmic dynein tail mutation impairs motor processivity

Abstract

Mutations in the tail of the cytoplasmic dynein molecule have been reported to cause neurodegenerative disease in mice. The mutant mouse strain Legs at odd angles (Loa) has impaired retrograde axonal transport, but the molecular deficiencies in the mutant dynein molecule, and how they contribute to neurodegeneration, are unknown. To address these questions, we purified dynein from wild-type mice and the Legs at odd angles mutant mice. Using biochemical, single-molecule, and live-cell-imaging techniques, we find a marked inhibition of motor run-length in vitro and in vivo, and significantly altered motor domain coordination in the dynein from mutant mice. These results suggest a potential role for the dynein tail in motor function, and provide direct evidence for a link between single-motor processivity and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and biochemical analysis of wild-type and mutant cytoplasmic dynein.
Figure 2: Single-molecule dynamics of cytoplasmic dynein isolated from wild-type and mutant mice.
Figure 3: Optical-trap analysis of wild-type and mutant cytoplasmic dynein dynamics in single- and multi-motor regions.
Figure 4: Analysis of retrograde transport of lysosomes in wild-type and mutant axons, with theoretical comparison.
Figure 5: Biophysical and biochemical evidence of altered motor coordination in mutant dynein.

Similar content being viewed by others

References

  1. Paschal, B. M. & Vallee, R. B. Retrograde transport by the microtubule associated protein MAP 1C. Nature 330, 181–183 (1987).

    Article  CAS  Google Scholar 

  2. Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    Article  CAS  Google Scholar 

  3. Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).

    Article  CAS  Google Scholar 

  4. Lai, C. et al. The G59S mutation in p150(glued) causes dysfunction of dynactin in mice. J. Neurosci. 27, 13982–13990 (2007).

    Article  CAS  Google Scholar 

  5. Chevalier-Larsen, E. S., Wallace, K. E., Pennise, C. R. & Holzbaur, E. L. Lysosomal proliferation and distal degeneration in motor neurons expressing the G59S mutation in the p150Glued subunit of dynactin. Hum. Mol. Genet. 17, 1946–1955 (2008).

    Article  CAS  Google Scholar 

  6. Kieran, D. et al. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. J. Cell Biol. 169, 561–567 (2005).

    Article  CAS  Google Scholar 

  7. Myers, K. R. et al. Intermediate chain subunit as a probe for cytoplasmic dynein function: biochemical analyses and live-cell imaging in PC12 cells. J. Neurosci. Res. 85, 2640–2647 (2007).

    Article  CAS  Google Scholar 

  8. Chen, X. J. et al. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J. Neurosci. 27, 14515–14524 (2007).

    Article  CAS  Google Scholar 

  9. Ilieva, H. S. et al. Mutant dynein (Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest motor neuron death. Proc. Natl Acad. Sci. USA 105, 12599–12604 (2008).

    Article  CAS  Google Scholar 

  10. Perlson, E. et al. A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J. Neurosci. 29, 9903–9917 (2009).

    Article  CAS  Google Scholar 

  11. King, S. J., Bonilla, M., Rodgers, M. E. & Schroer, T. A. Subunit organization in cytoplasmic dynein subcomplexes. Protein Sci. 11, 1239–1250 (2002).

    Article  CAS  Google Scholar 

  12. Shpetner, H. S., Paschal, B. M. & Vallee, R. B. Characterization of the microtubule-activated ATPase of brain cytoplasmic dynein (MAP 1C). J. Cell Biol. 107, 1001–1009 (1988).

    Article  CAS  Google Scholar 

  13. Ross, J. L., Wallace, K., Shuman, H., Goldman, Y. E. & Holzbaur, E. L. Processive bidirectional motion of dynein–dynactin complexes in vitro. Nat. Cell Biol. 8, 562–570 (2006).

    Article  CAS  Google Scholar 

  14. Mallik, R., Carter, B. C., Lex, S. A., King, S. J. & Gross, S. P. Cytoplasmic dynein functions as a gear in response to load. Nature 427, 649–652 (2004).

    Article  CAS  Google Scholar 

  15. Reck-Peterson, S. L. et al. Single-molecule analysis of Dynein processivity and stepping behavior. Cell 126, 335–348 (2006).

    Article  CAS  Google Scholar 

  16. McKenney, R. J., Vershinin, M., Kunwar, A., Vallee, R. B. & Gross, S. P. LIS1 and NudE induce a persistent dynein force-producing state. Cell 141, 304–314 (2010).

    Article  CAS  Google Scholar 

  17. Mallik, R., Petrov, D., Lex, S. A., King, S. J. & Gross, S. P. Building complexity: an in vitro study of cytoplasmic dynein with in vivo implications. Curr. Biol. 15, 2075–2085 (2005).

    Article  CAS  Google Scholar 

  18. King, S. J. & Schroer, T. A. Dynactin increases the processivity of the cytoplasmic dynein motor. Nat. Cell Biol. 2, 20–24 (2000).

    Article  CAS  Google Scholar 

  19. Kardon, J. R., Reck-Peterson, S. L. & Vale, R. D. Regulation of the processivity and intracellular localization of Saccharomyces cerevisiae dynein by dynactin. Proc. Natl Acad. Sci. USA 106, 5669–5674 (2009).

    Article  CAS  Google Scholar 

  20. Zhang, Q. et al. Nudel promotes axonal lysosome clearance and endo-lysosome formation via dynein-mediated transport. Traffic 10, 1337–1349 (2009).

    Article  CAS  Google Scholar 

  21. Shubeita, G. T. et al. Consequences of motor copy number on the intracellular transport of kinesin-1-driven lipid droplets. Cell 135, 1098–1107 (2008).

    Article  CAS  Google Scholar 

  22. Hendricks, A. G. et al. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Curr. Biol. 20, 697–702 (2010).

    Article  CAS  Google Scholar 

  23. Wang, Z., Khan, S. & Sheetz, M. P. Single cytoplasmic dynein molecule movements: characterization and comparison with kinesin. Biophys. J. 69, 2011–2023 (1995).

    Article  CAS  Google Scholar 

  24. Shima, T., Imamula, K., Kon, T., Ohkura, R. & Sutoh, K. Head–head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor. J. Struct. Biol. 156, 182–189 (2006).

    Article  CAS  Google Scholar 

  25. Sweeney, H. L. et al. How myosin VI coordinates its heads during processive movement. EMBO J. 26, 2682–2692 (2007).

    Article  CAS  Google Scholar 

  26. Gennerich, A. & Vale, R. D. Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67 (2009).

    Article  CAS  Google Scholar 

  27. Mikami, A., Paschal, B. M., Mazumdar, M. & Vallee, R. B. Molecular cloning of the retrograde transport motor cytoplasmic dynein (MAP 1C). Neuron 10, 787–796 (1993).

    Article  CAS  Google Scholar 

  28. Carter, B. C., Shubeita, G. T. & Gross, S. P. Tracking single particles: a user-friendly quantitative evaluation. Phys. Biol. 2, 60–72 (2005).

    Article  Google Scholar 

  29. Vershinin, M., Carter, B. C., Razafsky, D. S., King, S. J. & Gross, S. P. Multiple-motor based transport and its regulation by Tau. Proc. Natl Acad. Sci. USA 104, 87–92 (2007).

    Article  CAS  Google Scholar 

  30. Vershinin, M., Xu, J., Razafsky, D. S., King, S. J. & Gross, S. P. Tuning microtubule-based transport through filamentous MAPs: the problem of dynein. Traffic 9, 882–892 (2008).

    Article  CAS  Google Scholar 

  31. Svoboda, K., Schmidt, C. F., Schnapp, B. J. & Block, S. M. Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  CAS  Google Scholar 

  32. Svoboda, K. & Block, S. M. Force and velocity measured for single kinesin molecules. Cell 77, 773–784 (1994).

    Article  CAS  Google Scholar 

  33. Asbury, C. L., Shaevitz, J. W., & Lang, M. J. Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci. USA 100, 2351-2356 (2003).

  34. Kalafut, B. & Visscher, K. An objective, model-independent method for detection of non-uniform steps in noisy signals. Comput. Phys. Commun. 179, 716–723 (2008).

    Article  CAS  Google Scholar 

  35. Kerssemakers, J. W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  CAS  Google Scholar 

  36. Carter, B. C., Vershinin, M. & Gross, S. P. A comparison of step-detection methods: how well can you do? Biophys. J. 94, 306–319 (2008).

    Article  CAS  Google Scholar 

  37. Grabham, P. W., Bennecib, M., Seale, G. E., Goldberg, D. J. & Vallee, R. B. Cytoplasmic dynein and LIS1 are required for growth cone remodeling and fast neurite outgrowth. J. Neurosci. 27, 5823–5832 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. McKenney for help with the quantum dot assays and useful discussion, and M. Vershinnin for developing the tracking program. This work was supported by NIH grants GM47434 (to R.B.V.), RO1GM070676 (to S.P.G.) and GM008798-09 (to K.M.O.M.), AHA grant 825278F (to J.X.), and the Columbia University Motor Neuron Center.

Author information

Authors and Affiliations

Authors

Contributions

K.M.O.M., J.X., S.P.G. and R.B.V. designed the research. K.M.O.M. and J.X. performed experiments and analysed data. K.M.O.M., J.X., S.P.G. and R.B.V. wrote the paper.

Corresponding authors

Correspondence to Steven P. Gross or Richard B. Vallee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1855 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ori-McKenney, K., Xu, J., Gross, S. et al. A cytoplasmic dynein tail mutation impairs motor processivity. Nat Cell Biol 12, 1228–1234 (2010). https://doi.org/10.1038/ncb2127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing