Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heterochromatin boundaries are hotspots for de novo kinetochore formation

Abstract

The centromere-specific histone H3 variant CENH3 (also known as CENP-A) is considered to be an epigenetic mark for establishment and propagation of centromere identity. Pulse induction of CENH3 (Drosophila CID) in Schneider S2 cells leads to its incorporation into non-centromeric regions and generates CID islands that resist clearing from chromosome arms for multiple cell generations. We demonstrate that CID islands represent functional ectopic kinetochores, which are non-randomly distributed on the chromosome and show a preferential localization near telomeres and pericentric heterochromatin in transcriptionally silent, intergenic chromatin domains. Although overexpression of heterochromatin protein 1 (HP1) or increasing histone acetylation interferes with CID island formation on a global scale, induction of a locally defined region of synthetic heterochromatin by targeting HP1–LacI fusions to stably integrated Lac operator arrays produces a proximal hotspot for CID deposition. These data indicate that the characteristics of regions bordering heterochromatin promote de novo kinetochore assembly and thereby contribute to centromere identity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct islands of CID deposition remain after pulse overexpression of CID.
Figure 2: CID islands are functional ectopic kinetochores that can mediate poleward movement of acentric chromosome fragments and self-propagate through multiple rounds of the cell cycle.
Figure 3: Telomeres and pc-het are enriched for CID islands.
Figure 4: CID hotspots cover extended areas of 100–200 kb and correlate with transcriptionally silent, intergenic domains.
Figure 5: The heterochromatin–euchromatin transition zone is a hotspot for ectopic kinetochore formation and correlates with NDC80 binding before CID clearing.
Figure 6: Increased acetylation and high levels of HP1 inhibit whereas reduction of HP1 promotes the formation of CID islands.
Figure 7: Local targeting of HP1–LacI induces a new hotspot for CID-island formation.

Similar content being viewed by others

References

  1. Przewloka, M. R. & Glover, D. M. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 43, 439–465 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Welburn, J. P. & Cheeseman, I. M. Toward a molecular structure of the eukaryotic kinetochore. Dev. Cell 15, 645–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Santaguida, S. & Musacchio, A. The life and miracles of kinetochores. EMBO J. 28, 2511–2531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vagnarelli, P., Ribeiro, S. A. & Earnshaw, W. C. Centromeres: old tales and new tools. FEBS Lett. 582, 1950–1959 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Warburton, P. E. Chromosomal dynamics of human neocentromere formation. Chromosom. Res. 12, 617–626 (2004).

    Article  CAS  Google Scholar 

  6. Marshall, O. J., Chueh, A. C., Wong, L. H. & Choo, K. H. Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. Am. J. Hum. Genet. 82, 261–282 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allshire, R. C. & Karpen, G. H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat. Rev. Genet. 9, 923–937 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schuh, M., Lehner, C. F. & Heidmann, S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr. Biol. 17, 237–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Jansen, L. E., Black, B. E., Foltz, D. R. & Cleveland, D. W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol. 176, 795–805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capozzi, O. et al. Evolutionary and clinical neocentromeres: two faces of the same coin? Chromosoma 117, 339–344 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ventura, M. et al. Evolutionary formation of new centromeres in macaque. Science 316, 243–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Williams, B. C., Murphy, T. D., Goldberg, M. L. & Karpen, G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila . Nat. Genet. 18, 30–37 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Maggert, K. A. & Karpen, G. H. The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. Genetics 158, 1615–1628 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Platero, J. S., Ahmad, K. & Henikoff, S. A distal heterochromatic block displays centromeric activity when detached from a natural centromere. Mol. Cell. 4, 995–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Nasuda, S., Hudakova, S., Schubert, I., Houben, A. & Endo, T. R. Stable barley chromosomes without centromeric repeats. Proc. Natl Acad. Sci. USA 102, 9842–9847 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ishii, K. et al. Heterochromatin integrity affects chromosome reorganization after centromere dysfunction. Science 321, 1088–1091 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Ketel, C. et al. Neocentromeres form efficiently at multiple possible loci in Candida albicans . PLoS Genet. 5, e1000400 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marshall, O. J. & Choo, K. H. Neocentromeres come of age. PLoS Genet. 5, e1000370 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Folco, H. D., Pidoux, A. L., Urano, T. & Allshire, R. C. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319, 94–97 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Durand-Dubief, M. & Ekwall, K. Heterochromatin tells CENP-A where to go. Bioessays 30, 526–529 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Alonso, A., Hasson, D., Cheung, F. & Warburton, P. E. A paucity of heterochromatin at functional human neocentromeres. Epigenetics Chromatin 3, 6 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Saffery, R. et al. Transcription within a functional human centromere. Mol. Cell. 12, 509–516 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Tomonaga, T. et al. Overexpression and mistargeting of centromere protein-A in human primary colorectal cancer. Cancer Res. 63, 3511–3516 (2003).

    CAS  PubMed  Google Scholar 

  24. Ahmad, K. & Henikoff, S. Histone H3 variants specify modes of chromatin assembly. Proc. Natl Acad. Sci. USA 99 (Suppl 4), 16477–16484 (2002).

    Article  Google Scholar 

  25. Heun, P. et al. Mislocalization of the Drosophila centromere-specific histone CID promotes formation of functional ectopic kinetochores. Dev. Cell. 10, 303–315 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Collins, K. A., Furuyama, S. & Biggins, S. Proteolysis contributes to the exclusive centromere localization of the yeast Cse4/CENP-A histone H3 variant. Curr. Biol. 14, 1968–1972 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Moreno-Moreno, O., Torras-Llort, M. & Azorin, F. Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Res. 34, 6247–6255 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Heeger, S. et al. Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog. Genes Dev. 19, 2041–2053 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Basto, R., Gomes, R. & Karess, R. E. Rough deal and Zw10 are required for the metaphase checkpoint in Drosophila . Nat. Cell Biol. 2, 939–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Logarinho, E. & Sunkel, C. E. The Drosophila POLO kinase localises to multiple compartments of the mitotic apparatus and is required for the phosphorylation of MPM2 reactive epitopes. J. Cell Sci. 111 (Pt 19), 2897–2909 (1998).

    Google Scholar 

  31. Maia, A. F., Lopes, C. S. & Sunkel, C. E. BubR1 and CENP-E have antagonistic effects on the stability of microtubule-kinetochore attachments in Drosophila S2 cell mitosis. Cell Cycle 6, 1367–1378 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Zinchuk, V. & Zinchuk, O. Quantitative colocalization analysis of confocal fluorescence microscopy images. Curr. Protoc. Cell. Biol. Chapter 4, Unit 4 19 (2008).

  33. Celniker, S. E. et al. Unlocking the secrets of the genome. Nature 459, 927–930 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kharchenko, P. V. et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster . Nature (2010).

  35. Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alonso, A. et al. Co-localization of CENP-C and CENP-H to discontinuous domains of CENP-A chromatin at human neocentromeres. Genome Biol. 8, R148 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ciferri, C. et al. Implications for kinetochore–microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133, 427–439 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei, R. R., Al-Bassam, J. & Harrison, S. C. The Ndc80/HEC1 complex is a contact point for kinetochore–microtubule attachment. Nat. Struct. Mol. Biol. 14, 54–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Cheeseman, I. M., Chappie, J. S., Wilson-Kubalek, E. M. & Desai, A. The conserved KMN network constitutes the core microtubule-binding site of the kinetochore. Cell 127, 983–997 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Lam, A. L., Boivin, C. D., Bonney, C. F., Rudd, M. K. & Sullivan, B. A. Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc. Natl Acad. Sci. USA 103, 4186–4191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bergmann, J. H. et al. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30, 328–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kagansky, A. et al. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 324, 1716–1719 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Verschure, P. J. et al. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol. Cell. Biol. 25, 4552–4564 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Danzer, J. R. & Wallrath, L. L. Mechanisms of HP1-mediated gene silencing in Drosophila . Development 131, 3571–3580 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nat. Cell Biol. 3, 730–739 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frydrychova, R. C., Mason, J. M. & Archer, T. K. HP1 is distributed within distinct chromatin domains at Drosophila telomeres. Genetics 180, 121–131 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riddle, N. C. et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 21, 147–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ebert, A., Lein, S., Schotta, G. & Reuter, G. Histone modification and the control of heterochromatic gene silencing in Drosophila . Chromosom. Res. 14, 377–392 (2006).

    Article  CAS  Google Scholar 

  49. Villasante, A., Abad, J. P. & Mendez-Lago, M. Centromeres were derived from telomeres during the evolution of the eukaryotic chromosome. Proc. Natl Acad. Sci. USA 104, 10542–10547 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Losada, A., Agudo, M., Abad, J. P. & Villasante, A. HeT-A telomere-specific retrotransposons in the centric heterochromatin of Drosophila melanogaster chromosome 3. Mol. Gen. Genet. 262, 618–622 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Mendez-Lago, M. et al. Novel sequencing strategy for repetitive DNA in a Drosophila BAC clone reveals that the centromeric region of the Y chromosome evolved from a telomere. Nucleic Acids Res. 37, 2264–2273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakano, M. et al. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14, 507–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cardinale, S. et al. Hierarchical inactivation of a synthetic human kinetochore by a chromatin modifier. Mol. Biol. Cell. 20, 4194–4204 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sullivan, B. A. & Karpen, G. H. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11, 1076–1083 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chueh, A. C., Northrop, E. L., Brettingham-Moore, K. H., Choo, K. H. & Wong, L. H. LINE retrotransposon RNA is an essential structural and functional epigenetic component of a core neocentromeric chromatin. PLoS Genet. 5, e1000354 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wong, N. C. et al. Permissive transcriptional activity at the centromere through pockets of DNA hypomethylation. PLoS Genet. 2, e17 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Obuse, C. et al. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat. Cell Biol. 6, 1135–1141 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Cheeseman, I. M. & Desai, A. Molecular architecture of the kinetochore–microtubule interface. Nat. Rev. Mol. Cell. Biol. 9, 33–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. de Wit, E., Greil, F. & van Steensel, B. Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265–1273 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Straight, A. F., Belmont, A. S., Robinett, C. C. & Murray, A. W. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Pereira, A. J., Matos, I., Lince-Faria, M. & Maiato, H. Dissecting mitosis with laser microsurgery and RNAi in Drosophila cells. Methods Mol. Biol. 545, 145–164 (2009).

    Article  PubMed  Google Scholar 

  62. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jurka, J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Audic, S. & Claverie, J. M. The significance of digital gene expression profiles. Genome Res. 7, 986–995 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the following people for antibodies: T. Maresca and E. Salmon, R. Karess, C. Sunkel, S. Heidmann, C. Lehner and G. H. Karpen and R. Tsien for the mRFP construct. We would also like to thank B. Mellone, P. Pasero, B. Duncker and the laboratory members, particularly M-J. Mendiburo and J. Padeken for reagents, discussions and critical reading of the manuscript, and H-J. Schwarz for general assistance. Work in the laboratory of H.M. is funded by grants PTDC/SAU-GMG/099704/2008 and PTDC/SAU-ONC/112917/2009 from Fundação para a Ciência e a Tecnologia of Portugal (COMPETE-FEDER), the Human Frontier Research Program and the Seventh Framework Programme grant PRECISE from the European Research Council. Funding for this research project of the laboratory of P.H. was provided by the Max Planck Society, the Human Frontier Science Program (CDA) and by the Excellence Initiative of the German Federal and State Governments (EXC 294).

Author information

Authors and Affiliations

Authors

Contributions

A.M.O. carried out the cytological characterization of CID islands. A.J.P., A.M.O. and H.M. carried out laser-microsurgery experiments. D.v.E. and S.S. conducted the ChIP-seq and qPCR. T.M. and S.D. carried out bioinformatic analysis of ChIP-seq. A.M.O. and P.H. did the project planning and data analysis. P.H. wrote the manuscript.

Corresponding author

Correspondence to Patrick Heun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olszak, A., van Essen, D., Pereira, A. et al. Heterochromatin boundaries are hotspots for de novo kinetochore formation. Nat Cell Biol 13, 799–808 (2011). https://doi.org/10.1038/ncb2272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing