Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Variegated gene expression caused by cell-specific long-range DNA interactions

Abstract

Mammalian genomes contain numerous regulatory DNA sites with unknown target genes. We used mice with an extra β-globin locus control region (LCR) to investigate how a regulator searches the genome for target genes. We find that the LCR samples a restricted nuclear subvolume, wherein it preferentially contacts genes controlled by shared transcription factors. No contacted gene is detectably upregulated except for endogenous β-globin genes located on another chromosome. This demonstrates genetically that mammalian trans activation is possible, but suggests that it will be rare. Trans activation occurs not pan-cellularly, but in ‘jackpot’ cells enriched for the interchromosomal interaction. Therefore, cell-specific long-range DNA contacts can cause variegated expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An ectopic LCR does not activate a natural target gene on the homologous chromosome.
Figure 2: Contacts of 8C3–C4 with and without the LCR are similar.
Figure 3: Within a predetermined genomic environment the ectopic LCR shows preferential interactions with specific genes.
Figure 4: The ectopic LCR on chromosome 8 enhances the expression of the endogenous βh1 gene on chromosome 7.
Figure 5: Increased βh1 mRNA levels in cells showing interchromosomal LCR–βh1 interactions.
Figure 6: Increased βh1 and β-major mRNA levels in cells showing interchromosomal LCR–βh1 interactions.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amano, T. et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell 16, 47–57 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Kleinjan, D. J. & Coutinho, P. Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease. Brief Funct. Genomic Proteom. 8, 317–332 (2009).

    Article  CAS  Google Scholar 

  4. Epner, E. et al. The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse β-globin locus. Mol. Cell 2, 447–455 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Grosveld, F., van Assendelft, G. B., Greaves, D. R. & Kollias, G. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell 51, 975–985 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Wasylyk, B., Wasylyk, C., Augereau, P. & Chambon, P. The SV40 72 bp repeat preferentially potentiates transcription starting from proximal natural or substitute promoter elements. Cell 32, 503–514 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Wijgerde, M., Grosveld, F. & Fraser, P. Transcription complex stability and chromatin dynamics in vivo . Nature 377, 209–213 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F. & Fraser, P. Long-range chromatin regulatory interactions in vivo . Nat. Genet. 32, 623–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & de Laat, W. Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell 10, 1453–1465 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. de Laat, W. & Grosveld, F. Spatial organization of gene expression: the active chromatin hub. Chromosome Res. 11, 447–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Spilianakis, C. G. & Flavell, R. A. Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat. Immunol. 5, 1017–1027 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Vernimmen, D., De Gobbi, M., Sloane-Stanley, J. A., Wood, W. G. & Higgs, D. R. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26, 2041–2051 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown, K. E. et al. Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell 91, 845–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Chambeyron, S., Da Silva, N. R., Lawson, K. A. & Bickmore, W. A. Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132, 2215–2223 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Skok, J. A. et al. Nonequivalent nuclear location of immunoglobulin alleles in B lymphocytes. Nat. Immunol. 2, 848–854 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Hewitt, S. L. et al. Association between the Igk and Igh immunoglobulin loci mediated by the 3’ Igk enhancer induces ‘decontraction’ of the Igh locus in pre-B cells. Nat. Immunol. 9, 396–404 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lundgren, M. et al. Transcription factor dosage affects changes in higher order chromatin structure associated with activation of a heterochromatic gene. Cell 103, 733–743 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Noordermeer, D. et al. Transcription and chromatin organization of a housekeeping gene cluster containing an integrated β-globin locus control region. PLoS Genet. 4, e1000016 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ragoczy, T., Bender, M. A., Telling, A., Byron, R. & Groudine, M. The locus control region is required for association of the murine β-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet. 42, 53–61 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Apostolou, E. & Thanos, D. Virus infection induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell 134, 85–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312, 269–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lomvardas, S. et al. Interchromosomal interactions and olfactory receptor choice. Cell 126, 403–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Sandhu, K. S. et al. Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev. 23, 2598–2603 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Spilianakis, C. G., Lalioti, M. D., Town, T., Lee, G. R. & Flavell, R. A. Interchromosomal associations between alternatively expressed loci. Nature 435, 637–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Lewis, E. B. The theory and application of a new method of detectingchromosomal rearrangements in Drosophila melanogaster . Am. Naturalist 88, 225–239 (1954).

    Article  Google Scholar 

  27. Pirrotta, V. Transvection and chromosomal trans-interaction effects. Biochim. Biophys. Acta 1424, M1-8 (1999).

    PubMed  Google Scholar 

  28. Bolzer, A. et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 3, 826–842 (2005).

    Article  CAS  Google Scholar 

  29. Bacher, C. P. et al. Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat. Cell Biol. 8, 293–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Hewitt, S. L. et al. RAG-1 and ATM coordinate monoallelic recombinationand nuclear positioning of immunoglobulin loci. Nat. Immunol. 10, 655–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, N., Donohoe, M. E., Silva, S. S. & Lee, J. T. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat. Genet. 39, 1390–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Branco, M. R. & Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4, 780–788 (2006).

    Article  CAS  Google Scholar 

  33. Strouboulis, J., Dillon, N. & Grosveld, F. Developmental regulation of a complete 70-kb human β-globin locus in transgenic mice. Genes Dev. 6, 1857–1864 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. de Wit, E., Braunschweig, U., Greil, F., Bussemaker, H. J. & van Steensel, B. Global chromatin domain organization of the Drosophila genome. PLoS Genet. 4, e1000045 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Simonis, M., Kooren, J. & de Laat, W. An evaluation of 3C-based methods to capture DNA interactions. Nat. Methods 4, 895–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Drissen, R. et al. The erythroid phenotype of EKLF-null mice: defects in hemoglobin metabolism and membrane stability. Mol. Cell Biol. 25, 5205–5214 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hodge, D. et al. A global role for EKLF in definitive and primitive erythropoiesis. Blood 107, 3359–3370 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Welch, J. J. et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood 104, 3136–3147 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ . Science 280, 585–590 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Cajiao, I., Zhang, A., Yoo, E. J., Cooke, N. E. & Liebhaber, S. A. Bystander gene activation by a locus control region. EMBO J. 23, 3854–3863 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lower, K. M. et al. Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc. Natl Acad. Sci. USA 106, 21771–21776 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fuss, S. H., Omura, M. & Mombaerts, P. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130, 373–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Nishizumi, H., Kumasaka, K., Inoue, N., Nakashima, A. & Sakano, H. Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. Proc. Natl. Acad. Sci. USA 104, 20067–20072 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Muller, H. J. Types of visible variations induced by X-rays in Drosophila . J. Genet. 22, 299–334 (1930).

    Article  Google Scholar 

  49. Solovei, I. et al. Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp. Cell Res. 276, 10–23 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Levsky, J. M., Shenoy, S. M., Pezo, R. C. & Singer, R. H. Single-cell gene expression profiling. Science 297, 836–840 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Pau, G., Fuchs, F., Sklyar, O., Boutros, M. & Huber, W. EBImage–an R package for image processing with applications to cellular phenotypes. Bioinformatics 26, 979–981 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kolountzakis, M. N. & Kutulakos, K. N. Fast computation of the Euclidian distance maps for binary images. Inform. Process. Lett. 43, 181–184 (1992).

    Article  Google Scholar 

  53. Vincent, L. & Soille, P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. Pattern Analysis and Machine Intelligence, IEEE Trans. 13, 583–598 (2002).

    Article  Google Scholar 

  54. Smyth, G. K. & Speed, T. Normalization of cDNA microarray data. Methods 31, 265–273 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Marteijn and W. Vermeulen for providing Rad23a knockout material, Y. Oz for counting FISH slides, V. Buckle for providing BAC probes, J. van Rheenen and the Hubrecht Imaging Center for help with image analysis and E. Splinter and other members of the group for assistance. This work was financially supported by grants from the Dutch Scientific Organization (NWO) (91204082 and 935170621) and a European Research Council Starting Grant (209700, ‘4C’) to W.d.L.

Author information

Authors and Affiliations

Authors

Contributions

D.N. and W.d.L. designed the experiments, analysed the data and, with help from E.d.W., wrote the manuscript. D.N. and P.K. carried out experiments. E.d.W. analysed 4C data and developed the automated FISH image analysis. H.v.d.W. analysed 4C and microarray expression data. M.S. carried out 4C experiments. M.L-J. and R.H.S. designed and synthesized RNA-FISH probes. B.E. and A.d.K. helped with the FISH experiments.

Corresponding author

Correspondence to Wouter de Laat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3545 kb)

Supplementary Information

Supplementary Table 1 (XLS 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noordermeer, D., de Wit, E., Klous, P. et al. Variegated gene expression caused by cell-specific long-range DNA interactions. Nat Cell Biol 13, 944–951 (2011). https://doi.org/10.1038/ncb2278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing