Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phagocytic activity of neuronal progenitors regulates adult neurogenesis

Abstract

Whereas thousands of new neurons are generated daily during adult life, only a fraction of them survive and become part of neural circuits; the rest die, and their corpses are presumably cleared by resident phagocytes. How the dying neurons are removed and how such clearance influences neurogenesis are not well understood. Here, we identify an unexpected phagocytic role for the doublecortin (DCX)-positive neuronal progenitor cells during adult neurogenesis. Our in vivo andex vivo studies demonstrate that DCX+ cells comprise a significant phagocytic population within the neurogenic zones. Intracellular engulfment protein ELMO1, which promotes Rac activation downstream of phagocytic receptors, was required for phagocytosis by DCX+ cells. Disruption of engulfment in vivo genetically (in Elmo1-null mice) or pharmacologically (in wild-type mice) led to reduced uptake by DCX+ cells, accumulation of apoptotic nuclei in the neurogenic niches and impaired neurogenesis. Collectively, these findings indicate a paradigm wherein DCX+ neuronal precursors also serve as phagocytes, and that their phagocytic activity critically contributes to neurogenesis in the adult brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DCX-expressing neuronal progenitor cells exhibit phagocytic activity in vivo and ex vivo.
Figure 2: Inhibition of phagocytosis in the neurogenic niche in vivo impairs adult neurogenesis.
Figure 3: ELMO1-dependent phagocytosis of DCX+ cells in vitro.
Figure 4: Effect of ELMO1-dependent phagocytosis of DCX+ cells on neurogenesis in vivo.
Figure 5: ELMO1 deficiency impairs phagocytic activity of DCX+ cells in vivo.

Similar content being viewed by others

References

  1. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  Google Scholar 

  2. Eriksson, P. S. et al. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317 (1998).

    Article  CAS  Google Scholar 

  3. Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  Google Scholar 

  4. Kornack, D. R. & Rakic, P. Cell proliferation without neurogenesis in adult primate neocortex. Science 294, 2127–2130 (2001).

    Article  CAS  Google Scholar 

  5. Rakic, P. Adult neurogenesis in mammals: an identity crisis. J. Neurosci. 22, 614–618 (2002).

    Article  Google Scholar 

  6. Rakic, P. Neurogenesis in adult primate neocortex: an evaluation of the evidence. Nat. Rev. Neurosci. 3, 65–71 (2002).

    Article  CAS  Google Scholar 

  7. Kempermann, G., Kuhn, H. G. & Gage, F. H. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

    Article  CAS  Google Scholar 

  8. Ziv, Y. et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 9, 268–275 (2006).

    Article  CAS  Google Scholar 

  9. Leuner, B. et al. Learning enhances the survival of new neurons beyond the time when the hippocampus is required for memory. J. Neurosci. 24, 7477–7481 (2004).

    Article  CAS  Google Scholar 

  10. Gould, E., Beylin, A., Tanapat, P., Reeves, A. & Shors, T. J. Learning enhances adult neurogenesis in the hippocampal formation. Nat. Neurosci. 2, 260–265 (1999).

    Article  CAS  Google Scholar 

  11. Wolf, S. A. et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J. Immunol. 182, 3979–3984 (2009).

    Article  CAS  Google Scholar 

  12. Kempermann, G., Gast, D., Kronenberg, G., Yamaguchi, M. & Gage, F. H. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130, 391–399 (2003).

    Article  CAS  Google Scholar 

  13. Kronenberg, G. et al. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol. 467, 455–463 (2003).

    Article  Google Scholar 

  14. Kempermann, G., Jessberger, S., Steiner, B. & Kronenberg, G. Milestones ofneuronal development in the adult hippocampus. Trends Neurosci. 27, 447–452 (2004).

    Article  CAS  Google Scholar 

  15. Ma, D. K., Kim, W. R., Ming, G. L. & Song, H. Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann. N Y Acad. Sci. 1170, 664–673 (2009).

    Article  Google Scholar 

  16. Mandyam, C. D., Harburg, G. C. & Eisch, A. J. Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone. Neuroscience 146, 108–122 (2007).

    Article  CAS  Google Scholar 

  17. Gregory, C. D. & Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol. 223, 177–194 (2011).

    Article  CAS  Google Scholar 

  18. Nagata, S., Hanayama, R. & Kawane, K. Autoimmunity and the clearance of dead cells. Cell 140, 619–630 (2010).

    Article  CAS  Google Scholar 

  19. Elliott, M. R. & Ravichandran, K. S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol. 189, 1059–1070 (2010).

    Article  CAS  Google Scholar 

  20. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  21. Conover, J. C. et al. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3, 1091–1097 (2000).

    Article  CAS  Google Scholar 

  22. Song, H. J., Stevens, C. F. & Gage, F. H. Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat. Neurosci. 5, 438–445 (2002).

    Article  CAS  Google Scholar 

  23. Song, H., Stevens, C. F. & Gage, F. H. Astroglia induce neurogenesis from adult neural stem cells. Nature 417, 39–44 (2002).

    Article  CAS  Google Scholar 

  24. McFarland, K. N., Wilkes, S. R., Koss, S. E., Ravichandran, K. S. & Mandell, J. W. Neural-specific inactivation of ShcA results in increased embryonic neural progenitor apoptosis and microencephaly. J. Neurosci. 26, 7885–7897 (2006).

    Article  CAS  Google Scholar 

  25. Wu, H. H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat. Neurosci. 12, 1534–1541 (2009).

    Article  CAS  Google Scholar 

  26. Ziegenfuss, J. S. et al. Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453, 935–939 (2008).

    Article  CAS  Google Scholar 

  27. MacDonald, J. M. et al. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869–881 (2006).

    Article  CAS  Google Scholar 

  28. D’Arceuil, H. et al. 99mTc annexin V imaging of neonatal hypoxic brain injury. Stroke 31, 2692–2700 (2000).

    Article  Google Scholar 

  29. Zhang, X. et al. A minimally invasive, translational biomarker of ketamine-induced neuronal death in rats: microPET Imaging using 18F-annexin V. Toxicol. Sci. 111, 355–361 (2009).

    Article  CAS  Google Scholar 

  30. Maeda, Y., Shiratsuchi, A., Namiki, M. & Nakanishi, Y. Inhibition of sperm production in mice by annexin V microinjected into seminiferous tubules: possible etiology of phagocytic clearance of apoptotic spermatogenic cells and male infertility. Cell Death Differ. 9, 742–749 (2002).

    Article  CAS  Google Scholar 

  31. Reed-Geaghan, E. G., Savage, J. C., Hise, A. G. & Landreth, G. E. CD14 and toll-like receptors 2 and 4 are required for fibrillar Aβ-stimulated microglial activation. J. Neurosci. 29, 11982–11992 (2009).

    Article  CAS  Google Scholar 

  32. Koenigsknecht-Talboo, J. & Landreth, G. E. Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci. 25, 8240–8249 (2005).

    Article  CAS  Google Scholar 

  33. Koenigsknecht, J. & Landreth, G. Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J. Neurosci. 24, 9838–9846 (2004).

    Article  CAS  Google Scholar 

  34. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  Google Scholar 

  35. Gumienny, T. L. et al. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27–41 (2001).

    Article  CAS  Google Scholar 

  36. Elliott, M. R. et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 467, 333–337 (2010).

    Article  CAS  Google Scholar 

  37. Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495 (2010).

    Article  CAS  Google Scholar 

  38. Brown, J. et al. Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur. J. Neurosci. 17, 2042–2046 (2003).

    Article  Google Scholar 

  39. Kempermann, G., Brandon, E. P. & Gage, F. H. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr. Biol. 8, 939–942 (1998).

    Article  CAS  Google Scholar 

  40. Lu, Z. & Kipnis, J. Thrombospondin 1—a key astrocyte-derived neurogenic factor. FASEB J. 24, 1925–1934 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Smith for editing the original version of the manuscript and S. Zeitlin for comments. We also thank the members of the Kipnis and Ravichandran laboratories for discussions at many stages of conducting the work and the preparation of the manuscript. This work was supported in part by an award from the National Institute of General Medical Sciences (GM55761) to K.S.R. and in part by an award from the National Institute on Aging (R01AG034113) to J.K. K.S.R. is a Bill Benter Senior Fellow of the American Asthma Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. participated in the experimental design, carried out most of the experiments, analysed the data and participated in manuscript preparation; M.R.E. assisted with phagocytic assays and participated in experimental design; Y.C. assisted with immunofluorescent experiments; J.T.W. assisted with intracranial injections; A.L.K. supplied all the liposomes used in this study; K.S.R. helped with design of experiments and prepared the manuscript; J.K. designed the experiments, assisted with data analysis and prepared the manuscript.

Corresponding authors

Correspondence to Yubo Chen, Kodi S. Ravichandran or Jonathan Kipnis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1089 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Elliott, M., Chen, Y. et al. Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat Cell Biol 13, 1076–1083 (2011). https://doi.org/10.1038/ncb2299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing