Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The adaptor protein CRK is a pro-apoptotic transducer of endoplasmic reticulum stress

Abstract

Excessive demands on the protein-folding capacity of the endoplasmic reticulum (ER) cause irremediable ER stress and contribute to cell loss in a number of cell degenerative diseases, including type 2 diabetes and neurodegeneration1,2. The signals communicating catastrophic ER damage to the mitochondrial apoptotic machinery remain poorly understood3,4,5,6. We used a biochemical approach to purify a cytosolic activity induced by ER stress that causes release of cytochrome c from isolated mitochondria. We discovered that the principal component of the purified pro-apoptotic activity is the proto-oncoprotein CRK (CT10-regulated kinase), an adaptor protein with no known catalytic activity7. C r k−/− cells are strongly resistant to ER-stress-induced apoptosis. Moreover, CRK is cleaved in response to ER stress to generate an amino-terminal Mr14K fragment with greatly enhanced cytotoxic potential. We identified a putative BH3 (BCL2 homology 3) domain within this N-terminal CRK fragment, which sensitizes isolated mitochondria to cytochrome c release and when mutated significantly reduces the apoptotic activity of CRK in vivo. Together these results identify CRK as a pro-apoptotic protein that signals irremediable ER stress to the mitochondrial execution machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biochemical purification of ER stress apoptotic activity identifies CRK.
Figure 2: C r k−/− MEFs are significantly resistant to ER-stress-induced apoptosis.
Figure 3: CRKI or CRKII restores sensitivity of C r k−/− MEFs to ER-stress-induced apoptosis.
Figure 4: CRK is proteolytically cleaved into an apoptotic signal following irremediable ER stress.
Figure 5: CRKII contains a putative BH3 domain and triggers BAX/BAK-dependent apoptosis.

Similar content being viewed by others

References

  1. Marciniak, S. J. & Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 86, 1133–1149 (2006).

    Article  CAS  Google Scholar 

  2. Lin, J. H., Walter, P. & Yen, T. S. Endoplasmic reticulum stress in disease pathogenesis. Annu. Rev. Pathol. 3, 399–425 (2008).

    Article  CAS  Google Scholar 

  3. Shore, G. C., Papa, F. R. & Oakes, S. A. Signaling cell death from the endoplasmic reticulum stress response. Curr. Opin. Cell Biol. 23, 143–149 (2011).

    Article  CAS  Google Scholar 

  4. Oakes, S. A., Lin, S. S. & Bassik, M. C. The control of endoplasmic reticulum-initiated apoptosis by the BCL-2 family of proteins. Curr. Mol. Med. 6, 99–109 (2006).

    Article  CAS  Google Scholar 

  5. Han, D. et al. IRE1α kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell 138, 562–575 (2009).

    Article  CAS  Google Scholar 

  6. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    Article  CAS  Google Scholar 

  7. Matsuda, M. et al. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12, 3482–3489 (1992).

    Article  CAS  Google Scholar 

  8. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    Article  CAS  Google Scholar 

  9. Susin, S. A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  Google Scholar 

  10. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    Article  CAS  Google Scholar 

  11. Chipuk, J. E. & Green, D. R. PUMA cooperates with direct activator proteins to promote mitochondrial outer membrane permeabilization and apoptosis. Cell Cycle 8, 2692–2696 (2009).

    Article  CAS  Google Scholar 

  12. Strasser, A. The role of BH3-only proteins in the immune system. Nat. Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  Google Scholar 

  13. Lomonosova, E. & Chinnadurai, G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27 (Suppl 1), S2–S19 (2008).

    Article  Google Scholar 

  14. Li, J., Lee, B. & Lee, A. S. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J. Biol. Chem. 281, 7260–7270 (2006).

    Article  CAS  Google Scholar 

  15. Upton, J-P. et al. Caspase 2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol. Cell. Biol. 28, 3943–3951 (2008).

    Article  CAS  Google Scholar 

  16. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  Google Scholar 

  17. Wei, M. C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  18. Puthalakath, H. et al. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129, 1337–1349 (2007).

    Article  CAS  Google Scholar 

  19. Feller, S. M. Crk family adaptors-signalling complex formation and biological roles. Oncogene 20, 6348–6371 (2001).

    Article  CAS  Google Scholar 

  20. Park, T. J., Boyd, K. & Curran, T. Cardiovascular and craniofacial defects in Crk-null mice. Mol. Cell. Biol. 26, 6272–6282 (2006).

    Article  CAS  Google Scholar 

  21. Li, H., Zhu, H., Xu, C. J. & Yuan, J. Cleavage of BID by caspase 8mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    Article  CAS  Google Scholar 

  22. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    Article  CAS  Google Scholar 

  23. Wang, K., Yin, X. M., Chao, D. T., Milliman, C. L. & Korsmeyer, S. J. BID: a novel BH3 domain-only death agonist. Genes Dev. 10, 2859–2869 (1996).

    Article  CAS  Google Scholar 

  24. Wei, M. C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466 (2002).

    Article  CAS  Google Scholar 

  26. Lee, A. H., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23, 7448–7459 (2003).

    Article  CAS  Google Scholar 

  27. Glimcher, L. H. XBP1: the last two decades. Ann. Rheum. Dis. 69 (Suppl 1), i67–i71 (2010).

    Article  Google Scholar 

  28. Lee, A. H., Chu, G. C., Iwakoshi, N. N. & Glimcher, L. H. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 24, 4368–4380 (2005).

    Article  CAS  Google Scholar 

  29. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    Article  CAS  Google Scholar 

  30. Mayer, B. J., Hamaguchi, M. & Hanafusa, H. A novel viral oncogene with structural similarity to phospholipase C. Nature 332, 272–275 (1988).

    Article  CAS  Google Scholar 

  31. Mayer, B. J., Hamaguchi, M. & Hanafusa, H. Characterization of p47gag-crk, a novel oncogene product with sequence similarity to a putative modulatory domain of protein-tyrosine kinases and phospholipase C. Cold Spring Harb. Symp. Quant. Biol. 53 Pt 2, 907–914 (1988).

    Article  CAS  Google Scholar 

  32. Miller, C. T. et al. Increased C-CRK proto-oncogene expression is associated with an aggressive phenotype in lung adenocarcinomas. Oncogene 22, 7950–7957 (2003).

    Article  Google Scholar 

  33. Sriram, G. & Birge, R. B. Emerging roles for crk in human cancer. Genes Cancer 1, 1132–1139 (2010).

    Article  CAS  Google Scholar 

  34. Tosello-Trampont, A. C. et al. Identification of two signaling submodules within the CrkII/ELMO/Dock180 pathway regulating engulfment of apoptotic cells. Cell Death Differ 14, 963–972 (2007).

    CAS  PubMed  Google Scholar 

  35. Tosello-Trampont, A. C., Brugnera, E. & Ravichandran, K. S. Evidence for a conserved role for CRKII and Rac in engulfment of apoptotic cells. J. Biol. Chem. 276, 13797–13802 (2001).

    Article  CAS  Google Scholar 

  36. Parrizas, M., Blakesley, V. A., Beitner-Johnson, D. & Le Roith, D. The proto-oncogene Crk-II enhances apoptosis by a Ras-dependent, Raf-1/MAP kinase-independent pathway. Biochem. Biophys. Res. Commun. 234, 616–620 (1997).

    Article  CAS  Google Scholar 

  37. Kar, B., Reichman, C. T., Singh, S., O’Connor, J. P. & Birge, R. B. Proapoptoticfunction of the nuclear Crk II adaptor protein. Biochemistry 46, 10828–10840 (2007).

    Article  CAS  Google Scholar 

  38. Smith, J. J. et al. Apoptotic regulation by the Crk adapter protein mediated by interactions with Wee1 and Crm1/exportin. Mol. Cell. Biol. 22, 1412–1423 (2002).

    Article  CAS  Google Scholar 

  39. Smith, J. J. et al. Wee1-regulated apoptosis mediated by the crk adaptor protein in Xenopus egg extracts. J. Cell Biol. 151, 1391–1400 (2000).

    Article  CAS  Google Scholar 

  40. Evans, E. K., Lu, W., Strum, S. L., Mayer, B. J. & Kornbluth, S. Crk is required for apoptosis in Xenopus egg extracts. EMBO J. 16, 230–241 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Ganem, F. Papa and W. Greene for scientific advice and encouragement throughout this project. We thank C. Lin for help in preparing figures for the manuscript. We thank C. Crane for quantitative PCR assistance. We thank D. Winant at the Stanford PAN facility and N. Krogan and G. Cagney, UCSF, for mass spectrometry analysis of purified samples. This work was supported by NIH grants K08 AI054650 and RO1 CA136577 (S.A.O.); an HHMI Physician-Scientist Early Career Award (S.A.O.); the Steward Trust Foundation (S.A.O.); and the Sandler Program in Basic Sciences (S.A.O.). This work was also supported by a Pennsylvania Department of Health Cure Formulary grant (SAP#4100047628 to T.C.).

Author information

Authors and Affiliations

Authors

Contributions

K.A. and E.T.J. designed and carried out experiments and contributed to the manuscript. T-J.P. and T.C. contributed reagents and data interpretation. S.A.O. designed the study and wrote the manuscript.

Corresponding author

Correspondence to Scott A. Oakes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Austgen, K., Johnson, E., Park, TJ. et al. The adaptor protein CRK is a pro-apoptotic transducer of endoplasmic reticulum stress. Nat Cell Biol 14, 87–92 (2012). https://doi.org/10.1038/ncb2395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing