Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment

Abstract

Regulated centrosome biogenesis is required for accurate cell division and for maintaining genome integrity1. Centrosomes consist of a centriole pair surrounded by a protein network known as pericentriolar material1 (PCM). PCM assembly is a tightly regulated, critical step that determines the size and capability of centrosomes2,3,4. Here, we report a role for tubulin in regulating PCM recruitment through the conserved centrosomal protein Sas-4. Tubulin directly binds to Sas-4; together they are components of cytoplasmic complexes of centrosomal proteins5,6. A Sas-4 mutant, which cannot bind tubulin, enhances centrosomal protein complex formation and has abnormally large centrosomes with excessive activity. These results suggest that tubulin negatively regulates PCM recruitment. Whereas tubulin–GTP prevents Sas-4 from forming protein complexes, tubulin–GDP promotes it. Thus, the regulation of PCM recruitment by tubulin depends on its GTP/GDP-bound state. These results identify a role for tubulin in regulating PCM recruitment independent of its well-known role as a building block of microtubules7. On the basis of its guanine-bound state, tubulin can act as a molecular switch in PCM recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tubulin is present in each Sas-4 complex type.
Figure 2: Sas-4 is essential for recruiting S- γ-tubulin complexes to centrosomes.
Figure 3: Tubulin negatively regulates PCM recruitment.
Figure 4: Tubulin regulates Sas-4 complex formation.
Figure 5: GAP and guanine exchange activities in PCM recruitment.

Similar content being viewed by others

References

  1. Nigg, E. A. & Raff, J. W. Centrioles, centrosomes, and cilia in health and disease. Cell 139, 663–678 (2009).

    Article  CAS  Google Scholar 

  2. Conduit, P. T. et al. Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr. Biol. 20, 2178–2186 (2010).

    Article  CAS  Google Scholar 

  3. Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587 (2003).

    Article  CAS  Google Scholar 

  4. Piehl, M., Tulu, U. S., Wadsworth, P. & Cassimeris, L. Centrosome maturation: measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1. Proc. Natl Acad. Sci. USA 101, 1584–1588 (2004).

    Article  CAS  Google Scholar 

  5. Gopalakrishnan, J. et al. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat. Commun. 2, 359 (2011).

    Article  Google Scholar 

  6. Hung, L. Y., Chen, H. L., Chang, C. W., Li, B. R. & Tang, T. K. Identification of a novel microtubule-destabilizing motif in CPAP that binds to tubulin heterodimers and inhibits microtubule assembly. Mol. Biol. Cell 15, 2697–2706 (2004).

    Article  CAS  Google Scholar 

  7. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    Article  CAS  Google Scholar 

  8. Dammermann, A., Maddox, P. S., Desai, A. & Oegema, K. SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the γ-tubulin-mediated addition of centriolar microtubules. J. Cell Biol. 180, 771–785 (2008).

    Article  CAS  Google Scholar 

  9. Hung, L. Y., Tang, C. J. & Tang, T. K. Protein 4.1 R-135 interacts with a novel centrosomal protein (CPAP) which is associated with the γ-tubulin complex. Mol. Cell Biol. 20, 7813–7825 (2000).

    Article  CAS  Google Scholar 

  10. Pelletier, L., O’Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623 (2006).

    Article  CAS  Google Scholar 

  11. Leidel, S. & Gonczy, P. SAS-4 is essential for centrosome duplication in Celegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 4, 431–439 (2003).

    Article  CAS  Google Scholar 

  12. Hsu, W. B. et al. Functional characterization of the microtubule-binding and -destabilizing domains of CPAP and d-SAS-4. Exp. Cell Res. 314, 2591–2602 (2008).

    Article  CAS  Google Scholar 

  13. Tang, C. J., Fu, R. H., Wu, K. S., Hsu, W. B. & Tang, T. K. CPAP is a cell-cycle regulated protein that controls centriole length. Nat. Cell Biol. 11, 825–831 (2009).

    Article  CAS  Google Scholar 

  14. Basto, R. et al. Flies without Centrioles. Cell 125, 1375–1386 (2006).

    Article  CAS  Google Scholar 

  15. Blachon, S. et al. Drosophila asterless and vertebrate Cep152 Are orthologs essential for centriole duplication. Genetics 180, 2081–2094 (2008).

    Article  CAS  Google Scholar 

  16. Blachon, S. et al. A proximal centriole-like structure is present in Drosophila spermatids and can serve as a model to study centriole duplication. Genetics 182, 133–144 (2009).

    Article  CAS  Google Scholar 

  17. Kohlmaier, G. et al. Overly long centrioles and defective cell division upon excess of the SAS-4-related protein CPAP. Curr. Biol. 19, 1012–1018 (2009).

    Article  CAS  Google Scholar 

  18. Schmidt, T. I. et al. Control of centriole length by CPAP and CP110. Curr. Biol. 19, 1005–1011 (2009).

    Article  CAS  Google Scholar 

  19. Li, K. et al. Drosophila centrosomin protein is required for male meiosis and assembly of the flagellar axoneme. J. Cell Biol. 141, 455–467 (1998).

    Article  CAS  Google Scholar 

  20. Rogers, G. C., Rusan, N. M., Peifer, M. & Rogers, S. L. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163–3178 (2008).

    Article  CAS  Google Scholar 

  21. Choi, Y. K., Liu, P., Sze, S. K., Dai, C. & Qi, R. Z. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell Biol. 191, 1089–1095 (2010).

    Article  CAS  Google Scholar 

  22. Rusan, N. & Peifer, M. A role for a novel centrosome cycle in asymmetric cell division. J. Cell Biol. 177, 13–33 (2007).

    Article  CAS  Google Scholar 

  23. Giansanti, M., Gatti, M. & Bonaccorsi, S. The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development 128, 1137–1182 (2001).

    CAS  PubMed  Google Scholar 

  24. Sandoval, I. V., Jameson, J. L., Niedel, J., MacDonald, E. & Cuatrecasas, P. Role of nucleotides in tubulin polymerization: effect of guanosine 5’-methylene diphosphonate. Proc. Natl Acad. Sci. USA 75, 3178–3182 (1978).

    Article  CAS  Google Scholar 

  25. Cormier, A. et al. The PN2-3 domain of centrosomal P4.1-associated protein implements a novel mechanism for tubulin sequestration. J. Biol. Chem. 284, 6909–6917 (2009).

    Article  CAS  Google Scholar 

  26. Mozziconacci, J., Sandblad, L., Wachsmuth, M., Brunner, D. & Karsenti, E. Tubulin dimers oligomerize before their incorporation into microtubules. PLoS One 3, e3821 (2008).

    Article  Google Scholar 

  27. Hiller, G. & Weber, K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell 14, 795–804 (1978).

    Article  CAS  Google Scholar 

  28. David-Pfeuty, T., Simon, C. & Pantaloni, D. Effect of antimitotic drugs on tubulin GTPase activity and self-assembly. J. Biol. Chem. 254, 11696–11702 (1979).

    CAS  PubMed  Google Scholar 

  29. Cabrera-Vera, T. M. et al. Insights into G protein structure, function, and regulation. Endocr. Rev. 24, 765–781 (2003).

    Article  CAS  Google Scholar 

  30. Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).

    Article  CAS  Google Scholar 

  31. Melki, R., Carlier, M. F., Pantaloni, D. & Timasheff, S. N. Cold depolymerization of microtubules to double rings: geometric stabilization of assemblies. Biochemistry 28, 9143–9152 (1989).

    Article  CAS  Google Scholar 

  32. Kobayashi, T. & Dynlacht, B. D. Regulating the transition from centriole to basal body. J. Cell Biol. 193, 435–444 (2011).

    Article  CAS  Google Scholar 

  33. Janulevicius, A., van Pelt, J. & van Ooyen, A. Compartment volumeinfluences microtubule dynamic instability: a model study. Biophys. J. 90, 788–798 (2006).

    Article  CAS  Google Scholar 

  34. Zhai, Y., Kronebusch, P. J., Simon, P. M. & Borisy, G. G. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J. Cell Biol. 135, 201–214 (1996).

    Article  CAS  Google Scholar 

  35. Schiff, P. B. & Horwitz, S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc. Natl Acad. Sci. USA 77, 1561–1565 (1980).

    Article  CAS  Google Scholar 

  36. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).

    Article  CAS  Google Scholar 

  37. Zhou, P., Lugovskoy, A. A. & Wagner, G. A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J. Biomol. NMR 20, 11–14 (2001).

    Article  Google Scholar 

  38. Moritz, M. et al. Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell Biol. 130, 1149–1159 (1995).

    Article  CAS  Google Scholar 

  39. Gopalakrishnan, J. et al. Self-assembling SAS-6 multimer is a core centriole building block. J. Biol. Chem. 285, 8759–8770 (2010).

    Article  CAS  Google Scholar 

  40. Wodarz, A., Ramrath, A., Kuchinke, U. & Knust, E. Bazooka provides an apicalcue for Inscuteable localization in Drosophila neuroblasts. Nature 402, 544–547 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank J. Iwasa for scientific illustrations; T. Mitchision A. Johnson, I. Cheeseman and J. Malicki for scientific discussions; T. Kaufman, J. Raff, B. Raynaud-Messina and T. K. Tang (Institute of Biomedical Sciences, Taipei, Taiwan) for reagents; R. Reed laboratory (Harvard Medical School, USA), F. Eric, A. Hari, R. Rodriguez for technical help with biophysical experiments; E. Koundakjian for scientific editing and discussions; and electron microscopy facility staff at HMS for help with electron microscopy analyses. This work was supported by a grant (R01GM098394) from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

J.G. and T.A.R. conceived the project. J.G. performed most of the experiments described herein. T.A-R. supervised the project. Y-F.C. performed phase and electron microscopy analyses. A.H. performed biochemical complex analyses. M.L.B. generated constructs and took part in the biochemical purification of recombinant proteins. D.A.L. and N.M.R. advised on and discussed larval brain analyses.

Corresponding author

Correspondence to Tomer Avidor-Reiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 826 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopalakrishnan, J., Frederick Chim, YC., Ha, A. et al. Tubulin nucleotide status controls Sas-4-dependent pericentriolar material recruitment. Nat Cell Biol 14, 865–873 (2012). https://doi.org/10.1038/ncb2527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing