Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct inhibition of the cold-activated TRPM8 ion channel by Gαq

Abstract

Activation of the TRPM8 ion channel in sensory nerve endings produces a sensation of pleasant coolness. Here we show that inflammatory mediators such as bradykinin and histamine inhibit TRPM8 in intact sensory nerves, but do not do so through conventional signalling pathways. The G-protein subunit Gαq instead binds to TRPM8 and when activated by a Gq-coupled receptor directly inhibits ion channel activity. Deletion of Gαq largely abolished inhibition of TRPM8, and inhibition was rescued by a Gαq chimaera whose ability to activate downstream signalling pathways was completely ablated. Activated Gαq protein, but not Gβγ, potently inhibits TRPM8 in excised patches. We conclude that Gαq pre-forms a complex with TRPM8 and inhibits activation of TRPM8, following activation of G-protein-coupled receptors, by a direct action. This signalling mechanism may underlie the abnormal cold sensation caused by inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inflammatory mediators inhibit TRPM8-dependent cold nerve fibre activity.
Figure 2: Inflammatory mediators inhibit TRPM8 independently of downstream signalling pathways.
Figure 3: Inhibition of TRPM8 by BK is membrane-delimited.
Figure 4: Activated Gαq inhibits TRPM8 independently of the PLC pathway.
Figure 5: Inflammatory mediators inhibit TRPM8 through a direct action of activated Gαq.
Figure 6: Direct interaction of TRPM8 with Gαq.
Figure 7: Activated Gαq directly inhibits TRPM8 in excised patches.

Similar content being viewed by others

References

  1. Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl Acad. Sci. USA 93, 15435–15439 (1996).

    Article  CAS  Google Scholar 

  2. Numazaki, M., Tominaga, T., Toyooka, H. & Tominaga, M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J. Biol. Chem. 277, 13375–13378 (2002).

    Article  CAS  Google Scholar 

  3. Bhave, G. et al. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl Acad. Sci. USA 100, 12480–12485 (2003).

    Article  CAS  Google Scholar 

  4. Zhang, X., Huang, J. & McNaughton, P. A. NGF rapidly increases membrane expression of TRPV1 heat-gated ion channels. EMBO J. 24, 4211–4223 (2005).

    Article  CAS  Google Scholar 

  5. Zhang, X., Li, L. & McNaughton, P. A. Proinflammatory mediators modulate the heat-activated ion channel TRPV1 via the scaffolding protein AKAP79/150. Neuron 59, 450–461 (2008).

    Article  Google Scholar 

  6. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).

    Article  CAS  Google Scholar 

  7. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    Article  CAS  Google Scholar 

  8. Proudfoot, C. J. et al. Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol. 16, 1591–1605 (2006).

    Article  CAS  Google Scholar 

  9. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  Google Scholar 

  10. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  Google Scholar 

  11. Chung, M. K. & Caterina, M. J. TRP channel knockout mice lose their cool. Neuron 54, 345–347 (2007).

    Article  CAS  Google Scholar 

  12. Daniels, R. L. & McKemy, D. D. Mice left out in the cold: commentary on the phenotype of TRPM8-nulls. Mol. Pain 3, 23–26 (2007).

    Article  Google Scholar 

  13. Xing, H., Chen, M., Ling, J., Tan, W. & Gu, J. G. TRPM8 mechanism of cold allodynia after chronic nerve injury. J. Neurosci. 27, 13680–13690 (2007).

    Article  CAS  Google Scholar 

  14. Rohacs, T., Lopes, C. M., Michailidis, I. & Logothetis, D. E. PI(4, 5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat. Neurosci. 8, 626–634 (2005).

    Article  CAS  Google Scholar 

  15. Liu, B. & Qin, F. Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 25, 1674–1681 (2005).

    Article  CAS  Google Scholar 

  16. Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006).

    Article  CAS  Google Scholar 

  17. Premkumar, L. S., Raisinghani, M., Pingle, S. C., Long, C. & Pimentel, F. Downregulation of transient receptor potential melastatin 8 by protein kinase C-mediated dephosphorylation. J Neurosci. 25, 11322–11329 (2005).

    Article  CAS  Google Scholar 

  18. Linte, R. M., Ciobanu, C., Reid, G. & Babes, A. Desensitization of cold- and menthol-sensitive rat dorsal root ganglion neurones by inflammatory mediators. Exp. Brain Res. 178, 89–98 (2007).

    Article  CAS  Google Scholar 

  19. Parra, A. et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat. Med. 16, 1396–1399 (2010).

    Article  CAS  Google Scholar 

  20. Cesare, P., Dekker, L. V., Sardini, A., Parker, P. J. & McNaughton, P. A. Specific involvement of PKC-epsilon in sensitization of the neuronal response to painful heat. Neuron 23, 617–624 (1999).

    Article  CAS  Google Scholar 

  21. Koike-Tani, M. et al. Signal transduction pathway for the substance P-induced inhibition of rat Kir3 (GIRK) channel. J. Physiol. 564, 489–500 (2005).

    Article  CAS  Google Scholar 

  22. Chen, X. et al. Inhibition of a background potassium channel by Gq protein α-subunits. Proc. Natl Acad. Sci. USA 103, 3422–3427 (2006).

    Article  CAS  Google Scholar 

  23. Wu, D. Q., Lee, C. H., Rhee, S. G. & Simon, M. I. Activation of phospholipase C by the α subunits of the Gq and G11 proteins in transfected Cos-7 cells. J. Biol. Chem. 267, 1811–1817 (1992).

    CAS  PubMed  Google Scholar 

  24. Takasaki, J. et al. A novel Gαq/11-selective inhibitor. J. Biol. Chem. 279, 47438–47445 (2004).

    Article  CAS  Google Scholar 

  25. Quinn, K. V., Behe, P. & Tinker, A. Monitoring changes in membrane phosphatidylinositol 4,5-bisphosphate in living cells using a domain from the transcription factor tubby. J. Physiol. 586, 2855–2871 (2008).

    Article  CAS  Google Scholar 

  26. Venkatakrishnan, G. & Exton, J. H. Identification of determinants in the α-subunit of Gq required for phospholipase C activation. J. Biol. Chem. 271, 5066–5072 (1996).

    Article  CAS  Google Scholar 

  27. Offermanns, S. et al. Embryonic cardiomyocyte hypoplasia and craniofacial defects in Gαq/Gα11-mutant mice. EMBO J. 17, 4304–4312 (1998).

    Article  CAS  Google Scholar 

  28. Yao, X., Kwan, H. Y. & Huang, Y. Regulation of TRP channels by phosphorylation. Neurosignals 14, 273–280 (2005).

    Article  CAS  Google Scholar 

  29. Huang, J., Zhang, X. & McNaughton, P. A. Modulation of temperature-sensitive TRP channels. Semin. Cell Dev. Biol. 17, 638–645 (2006).

    Article  CAS  Google Scholar 

  30. Clapham, D. E. & Neer, E. J. G protein βγ subunits. Annu. Rev. Pharmacol. Toxicol. 37, 167–203 (1997).

    Article  CAS  Google Scholar 

  31. Dascal, N. Ion-channel regulation by G proteins. Trends Endocrinol. Metab 12, 391–398 (2001).

    Article  CAS  Google Scholar 

  32. Gamper, N. & Shapiro, M. S. Regulation of ion transport proteins by membrane phosphoinositides. Nat. Rev. Neurosci. 8, 921–934 (2007).

    Article  CAS  Google Scholar 

  33. Brown, D. A., Hughes, S. A., Marsh, S. J. & Tinker, A. Regulation of M(Kv7.2/7.3) channels in neurons by PIP(2) and products of PIP(2) hydrolysis: significance for receptor-mediated inhibition. J. Physiol. 582, 917–925 (2007).

    Article  CAS  Google Scholar 

  34. Nilius, B., Owsianik, G. & Voets, T. Transient receptor potential channels meet phosphoinositides. EMBO J. 27, 2809–2816 (2008).

    Article  CAS  Google Scholar 

  35. Suh, B. C. & Hille, B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu. Rev. Biophys. 37, 175–195 (2008).

    Article  CAS  Google Scholar 

  36. Dowal, L., Provitera, P. & Scarlata, S. Stable association between Gα(q) and phospholipase Cβ1 in living cells. J. Biol. Chem. 281, 23999–24014 (2006).

    Article  CAS  Google Scholar 

  37. Grubb, D. R., Vasilevski, O., Huynh, H. & Woodcock, E. A. The extreme C-terminal region of phospholipase Cβ1 determines subcellular localization and function; the ‘b’ splice variant mediates α1-adrenergic receptor responses in cardiomyocytes. FASEB J. 22, 2768–2774 (2008).

    Article  CAS  Google Scholar 

  38. Klasen, K. et al. The TRPM8 ion channel comprises direct Gq protein-activating capacity. Pflugers Arch. 463, 779–797 (2012).

    Article  CAS  Google Scholar 

  39. Studer, M. & McNaughton, P. A. Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 588, 3743–3756 (2010).

    Article  CAS  Google Scholar 

  40. Kozasa, T. & Gilman, A. G. Purification of recombinant G proteins from Sf9 cells by hexahistidine tagging of associated subunits. Characterization of α12and inhibition of adenylyl cyclase by α z. J. Biol. Chem. 270, 1734–1741 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Offermanns (Max Planck Institute for Heart and Lung Research, Germany) for providing MEF cells, G. Hammond (Department of Pharmacology, University of Cambridge, UK) for Tubby–R332H–cYFP and PLCδ-PH–EGFP cDNA and for help with imaging analysis, O. Opaleye (Department of Biochemistry, University of Cambridge, UK) for help with protein purification, R. Hardie (Department of Physiology, Development and Neuroscience, University of Cambridge, UK) and S.B. Hladky (Department of Pharmacology, University of Cambridge, UK) for help with single-channel recording, and R. Hardie for critical reading of an earlier version of the manuscript. This work was supported by an MRC new investigator research grant (G0801387 to X.Z.), a BBSRC research grant (BB/F003072/1 to P.A.M.) and a grant from the Fundacion BBVA (to P.A.M., to support a BBVA visiting professorship at the Instituto de Neurociencias, Alicante, Spain).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. came up with the hypothesis, designed and performed experiments, and analysed data except calcium imaging experiments, which were carried out by S.M., and nerve fibre recordings, which were carried out by A.P, B.D., C.B. and P.A.M.; L.L. assisted with molecular biology experiments and neuron preparation. X.Z. wrote the manuscript with input from C.B. and P.A.M. X.Z. and P.A.M. supervisedthe project.

Corresponding authors

Correspondence to Xuming Zhang or Peter A. McNaughton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1264 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Mak, S., Li, L. et al. Direct inhibition of the cold-activated TRPM8 ion channel by Gαq. Nat Cell Biol 14, 851–858 (2012). https://doi.org/10.1038/ncb2529

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing