Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization

Abstract

As the main microtubule-organizing centre in animal cells, the centrosome has a fundamental role in cell function. Surrounding the centrioles, the pericentriolar material (PCM) provides a dynamic platform for nucleating microtubules. Although the importance of the PCM is established, its amorphous electron-dense nature has made it refractory to structural investigation. By using SIM and STORM subdiffraction-resolution microscopies to visualize proteins critical for centrosome maturation, we demonstrate that the PCM is organized into two main structural domains: a layer juxtaposed to the centriole wall, and proteins extending farther away from the centriole organized in a matrix. Analysis of Pericentrin-like protein (PLP) reveals that its carboxy terminus is positioned at the centriole wall, it radiates outwards into the matrix and is organized in clusters having quasi-nine-fold symmetry. By RNA-mediated interference (RNAi), we show that PLP fibrils are required for interphase recruitment and proper mitotic assembly of the PCM matrix.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 3D SIM of proteins critical for centrosome maturation identifies two distinct structural domains within the PCM.
Figure 2: The molecular architecture of PLP.
Figure 3: PLP fibrils associated with mother centrioles form a gap where the daughter centriole assembles.
Figure 4: PLP is associated exclusively with mother centrioles until metaphase.
Figure 5: Plp is required for the initial recruitment and proper 3D assembly of the PCM distal layer.
Figure 6: The molecular architecture of Kendrin/Pericentrin is similar to that of PLP.
Figure 7: Pericentrin-like protein forms elongated fibrils that extend radially from the centriole wall to support the 3D organization of the PCM.

Similar content being viewed by others

References

  1. Bettencourt-Dias, M. & Glover, D. M. Centrosome biogenesis and function: centrosomics brings new understanding. Nat. Rev. Mol. Cell Biol. 8, 451–463 (2007).

    Article  CAS  Google Scholar 

  2. Nigg, E. A. & Stearns, T. The centrosome cycle: centriole biogenesis, duplication and inherent asymmetries. Nat. Cell Biol. 13, 1154–1160 (2011).

    Article  CAS  Google Scholar 

  3. Azimzadeh, J. & Marshall, W. F. Building the centriole. Curr. Biol. 20, R816–R825 (2010).

    Article  CAS  Google Scholar 

  4. Bettencourt-Dias, M. et al. Centrosomes and cilia in human disease. Trends Genet. 27, 307–315 (2011).

    Article  CAS  Google Scholar 

  5. Vorobjev, I. A. & Chentsov Yu, S. Centrioles in the cell cycle. I. Epithelial cells. J. Cell. Biol. 93, 938–949 (1982).

    Article  CAS  Google Scholar 

  6. Rieder, C. L. The centrosome cycle in PtK2 cells: asymmetric distribution and structural changes in the pericentriolar material. Biol. Cell. 44, 117–132 (1982).

    Google Scholar 

  7. Bornens, M. et al. Structural and chemical characterization of isolated centrosomes. Cell Motil. Cytoskeleton. 8, 238–249 (1987).

    Article  CAS  Google Scholar 

  8. Mogensen, M. M. et al. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J. Cell Sci. 113, 3013–3023 (2000).

    CAS  PubMed  Google Scholar 

  9. Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25–34 (2002).

    Article  CAS  Google Scholar 

  10. Moritz, M. et al. Microtubule nucleation by γ-tubulin-containing rings in the centrosome. Nature 378, 638–640 (1995).

    Article  CAS  Google Scholar 

  11. Kollman, J. M. et al. Microtubule nucleation by γ-tubulin complexes. Nat. Rev. Mol. Cell Biol. 12, 709–721 (2011).

    Article  CAS  Google Scholar 

  12. Palazzo, R. E. et al. Centrosome maturation. Curr. Top Dev. Biol. 49, 449–470 (2000).

    Article  CAS  Google Scholar 

  13. Decker, M. et al. Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr. Biol. 21, 1259–1267 (2011).

    Article  CAS  Google Scholar 

  14. Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003).

    Article  CAS  Google Scholar 

  15. Muller, H. et al. Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J. 29, 3344–3357 (2010).

    Article  Google Scholar 

  16. Li, J. B. et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117, 541–552 (2004).

    Article  CAS  Google Scholar 

  17. Kilburn, C. L. et al. New tetrahymena basal body protein components identify basal body domain structure. J. Cell. Biol. 178, 905–912 (2007).

    Article  CAS  Google Scholar 

  18. Keller, L. C. et al. Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol. 15, 1090–1098 (2005).

    Article  CAS  Google Scholar 

  19. Pelletier, L. et al. Centriole assembly in Caenorhabditis elegans. Nature 444, 619–623 (2006).

    Article  CAS  Google Scholar 

  20. Guichard, P. et al. Procentriole assembly revealed by cryo-electron tomography. EMBO J. 29, 1565–1572 (2010).

    Article  CAS  Google Scholar 

  21. Paintrand, M. et al. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).

    Article  CAS  Google Scholar 

  22. Li, S. et al. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J. 31, 552–562 (2012).

    Article  CAS  Google Scholar 

  23. Anderson, R. G. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J. Cell. Biol. 54, 246–265 (1972).

    Article  CAS  Google Scholar 

  24. O’Toole, E. T. et al. Three-dimensional organization of basal bodies from wild-type and delta-tubulin deletion strains of Chlamydomonas reinhardtii. Mol. Biol. Cell 14, 2999–3012 (2003).

    Article  Google Scholar 

  25. Wiese, C. & Zheng, Y. A new function for the γ-tubulin ring complex as a microtubule minus-end cap. Nat. Cell Biol. 2, 358–364 (2000).

    Article  CAS  Google Scholar 

  26. Keating, T. J. & Borisy, G. G. Immunostructural evidence for the template mechanism of microtubule nucleation. Nat. Cell Biol. 2, 352–357 (2000).

    Article  CAS  Google Scholar 

  27. Moritz, M. et al. Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell. Biol. 130, 1149–1159 (1995).

    Article  CAS  Google Scholar 

  28. Ibrahim, R. et al. Electron tomography study of isolated human centrioles. Microsc. Res. Tech. 72, 42–48 (2009).

    Article  Google Scholar 

  29. Moritz, M. et al. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell. Biol. 142, 775–786 (1998).

    Article  CAS  Google Scholar 

  30. Schnackenberg, B. J. et al. Reconstitution of microtubule nucleation potential in centrosomes isolated from Spisula solidissima oocytes. J. Cell Sci. 113, 943–953 (2000).

    CAS  PubMed  Google Scholar 

  31. Ou, Y. Y. et al. Higher order structure of the PCM adjacent to the centriole. Cell Motil. Cytoskeleton 55, 125–133 (2003).

    Article  Google Scholar 

  32. Ou, Y. & Rattner, J. B. A subset of centrosomal proteins are arranged in a tubular conformation that is reproduced during centrosome duplication. Cell Motil. Cytoskeleton. 47, 13–24 (2000).

    Article  CAS  Google Scholar 

  33. Gustafsson, M. G. et al. Three-dimensional resolution doubling in wide-fieldfluorescence microscopy by structured illumination. Biophys. J. 94, 4957–4970 (2008).

    Article  CAS  Google Scholar 

  34. Huang, B. et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  35. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  CAS  Google Scholar 

  36. Gogendeau, D. & Basto, R. Centrioles in flies: the exception to the rule? Semin. Cell Dev. Biol. 21, 163–173 (2010).

    Article  Google Scholar 

  37. Schermelleh, L. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320, 1332–1336 (2008).

    Article  CAS  Google Scholar 

  38. Nakazawa, Y. et al. SAS-6 is a cartwheel protein that establishes the 9-fold symmetry of the centriole. Curr. Biol. 17, 2169–2174 (2007).

    Article  CAS  Google Scholar 

  39. Rodrigues-Martins, A. et al. DSAS-6 organizes a tube-like centriole precursor, and its absence suggests modularity in centriole assembly. Curr. Biol. 17, 1465–1472 (2007).

    Article  CAS  Google Scholar 

  40. Gopalakrishnan, J. et al. SAS-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat. Commun. 2, 359 (2011).

    Article  Google Scholar 

  41. Kirkham, M. et al. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575–587 (2003).

    Article  CAS  Google Scholar 

  42. Van Breugel, M. et al. Structures of SAS-6 suggest its organization in centrioles. Science 331, 1196–1199 (2011).

    Article  CAS  Google Scholar 

  43. Kitagawa, D. et al. Structural basis of the 9-fold symmetry of centrioles. Cell 144, 364–375 (2011).

    Article  CAS  Google Scholar 

  44. Gillingham, A. K. & Munro, S. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep. 1, 524–529 (2000).

    Article  CAS  Google Scholar 

  45. Kawaguchi, S. & Zheng, Y. Characterization of a Drosophila centrosome protein CP309 that shares homology with Kendrin and CG-NAP. Mol. Biol. Cell 15, 37–45 (2004).

    Article  Google Scholar 

  46. Martinez-Campos, M. et al. The Drosophila pericentrin-like protein is essential for cilia/flagella function, but appears to be dispensable for mitosis. J. Cell. Biol. 165, 673–683 (2004).

    Article  CAS  Google Scholar 

  47. Conduit, P. T. et al. Centrioles regulate centrosome size by controlling the rate of CNN incorporation into the PCM. Curr. Biol. 20, 2178–2186 (2010).

    Article  CAS  Google Scholar 

  48. Erickson, H. P. Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online 11, 32–51 (2009).

    Article  CAS  Google Scholar 

  49. Xu, K., Babcock, H. P. & Zhuang, X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods 9, 185–188 (2012).

    Article  CAS  Google Scholar 

  50. Lau, L. et al. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein. Biophys. J. 102, 2926–2935 (2012).

    Article  CAS  Google Scholar 

  51. Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714–718 (2010).

    Article  CAS  Google Scholar 

  52. Rogers, G. C. et al. The SCF Slimb ubiquitin ligase regulates Plk4/Sak levels to block centriole reduplication. J. Cell. Biol. 184, 225–239 (2009).

    Article  CAS  Google Scholar 

  53. Loncarek, J. et al. Control of daughter centriole formation by the pericentriolar material. Nat. Cell Biol. 10, 322–328 (2008).

    Article  CAS  Google Scholar 

  54. Wang, W. J. et al. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J. Cell. Biol. 193, 727–739 (2011).

    Article  CAS  Google Scholar 

  55. Dobbelaere, J. et al. A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol. 16, e224 (2008).

    Article  Google Scholar 

  56. Rogers, G. C. et al. A multicomponent assembly pathway contributes to the formation of acentrosomal microtubule arrays in interphase Drosophila cells. Mol. Biol. Cell 19, 3163–3178 (2008).

    Article  CAS  Google Scholar 

  57. Choi, Y. K. et al. CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J. Cell. Biol. 191, 1089–1095 (2010).

    Article  CAS  Google Scholar 

  58. Miyoshi, K. et al. Pericentrin, a centrosomal protein related to microcephalic primordial dwarfism, is required for olfactory cilia assembly in mice. FASEB J. 23, 3289–3297 (2009).

    Article  CAS  Google Scholar 

  59. Takahashi, M. et al. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245 (2002).

    Article  CAS  Google Scholar 

  60. Delaval, B. & Doxsey, S. J. Pericentrin in cellular function and disease. J. Cell. Biol. 188, 181–190 (2010).

    Article  CAS  Google Scholar 

  61. Rauch, A. et al. Mutations in the pericentrin (PCNT) gene cause primordial dwarfism. Science 319, 816–819 (2008).

    Article  CAS  Google Scholar 

  62. Dictenberg, J. B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell. Biol. 141, 163–174 (1998).

    Article  CAS  Google Scholar 

  63. Ou, Y., Zhang, M. & Rattner, J. B. The centrosome: the centriole-PCM coalition. Cell Motil. Cytoskeleton. 57, 1–7 (2004).

    Article  CAS  Google Scholar 

  64. Mahen, R. & Venkitaraman, A. R. Pattern formation in centrosome assembly. Curr. Opin. Cell Biol. 24, 14–23 (2012).

    Article  CAS  Google Scholar 

  65. Flory, M. R. & Davis, T. N. The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. Genomics 82, 401–405 (2003).

    Article  CAS  Google Scholar 

  66. Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol.http://dx.doi.org/10.1038/ncb2591 (2012).

  67. Sonnen, K. F., Schermelleh, L., Leonhardt, H. & Nigg, E. A. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open 000, 1–12 (2012).

    Google Scholar 

  68. Mennella, V. et al. Motor domain phosphorylation and regulation of the Drosophila kinesin 13, KLP10A. J. Cell. Biol. 186, 481–490 (2009).

    Article  CAS  Google Scholar 

  69. Rogers, S. L. et al. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell. Biol. 162, 1079–1088 (2003).

    Article  CAS  Google Scholar 

  70. Goshima, G. et al. Genes required for mitotic spindle assembly in Drosophila S2 cells. Science 316, 417–421 (2007).

    Article  CAS  Google Scholar 

  71. McDonald, K. L. Electron microscopy and EM immunocytochemistry. Method. Cell Biol. 44, 411–444 (1994).

    Article  CAS  Google Scholar 

  72. Beaudoin, G. M. 3rd et al. Afadin, a ras/rap effector that controls cadherin function, promotes spine and excitatory synapse density in the hippocampus. J. Neurosci. 32, 99–110 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We especially thank J. Sedat, L. Winoto and C. Weisiger for invaluable assistance with the OMX, S. Li for advice and help with the 3D alignment strategy, and D. Buster and K. Model for comments and editing on the manuscript. We also would like to thank T. Avidor-reiss (Harvard University, USA), J. Raff (University of Oxford, UK), M. Bettencourt-Dias (Instituto Gulbenkian de Ciencia, Portugal), M. Gatti (Universitá La Sapienza di Roma, Italy), T. Megraw (Florida State University, USA), M. Takahashi (Teikyo Heisei University, Japan), Y. Zheng (Carnegie Institution of Washington) and Howard Hughes Medical Institute, T. Davis (University of Washington) and T. Kaufman (University of Indiana, USA) for generously sharing their antibodies. This work was financially supported by HHMI and NIH grant GM310627. B.H. is a recipient of the Searle Scholarship and the Packard Fellowship for Science and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

V.M. conceived the strategy, designed and performed experiments, analysed data and wrote the paper; B.K. and V.M., with input from others at UCSF, developed the 3D volume alignment and analysis procedure; K.L.M. performed the immuno-electron microscopy experiments; B.C. helped with STORM data acquisition; F.K. helped with immunostaining experiments; G.C.R. provided reagents and constructs; B.H. advised on data analysis and STORM experiments and discussed results; D.A.A. advised on data analysis, discussed results and wrote the paper.

Corresponding author

Correspondence to D. A. Agard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 551 kb)

Supplementary Table 1

Supplementary Information (XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mennella, V., Keszthelyi, B., McDonald, K. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat Cell Biol 14, 1159–1168 (2012). https://doi.org/10.1038/ncb2597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing