Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2

Abstract

The epithelial–mesenchymal transition (EMT) is a complex process that occurs during organogenesis and in cancer metastasis. Despite recent progress, the molecular pathways connecting the physiological and pathological functions of EMT need to be better defined. Here we show that the transcription factor Elf5, a key regulator of mammary gland alveologenesis, controls EMT in both mammary gland development and metastasis. We uncovered this role for Elf5 through analyses of Elf5 conditional knockout animals, various in vitro and in vivo models of EMT and metastasis, an MMTV-neu transgenic model of mammary tumour progression and clinical breast cancer samples. Furthermore, we demonstrate that Elf5 suppresses EMT by directly repressing the transcription of Snail2, a master regulator of mammary stem cells and a known inducer of EMT. These findings establish Elf5 not only as a key cell lineage regulator during normal mammary gland development, but also as a suppressor of EMT and metastasis in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of Elf5 in the mouse mammary gland results in an EMT-like phenotype during pregnancy and lactation.
Figure 2: Loss of Elf5 leads to increased EMT gene expression programs.
Figure 3: Silencing ELF5 induces EMT in T47D cells and increases migratory potential.
Figure 4: Overexpression of Elf5 reverses mesenchymal characteristics of MDA-231 cells.
Figure 5: Elf5 binds to the SNAI2 promoter and represses its expression.
Figure 6: Expression pattern and prognostic values of ELF5 and SNAIL2 in breast tumours.
Figure 7: Elf5 inhibits lung metastasis in transplantable mouse models of metastasis.
Figure 8: Elf5 inhibits lung metastasis in the MMTV-Neu transgenic mouse model.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Thiery, J. P. & Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131–142 (2006).

    Article  CAS  Google Scholar 

  2. Yang, J. & Weinberg, R. A. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev. Cell 14, 818–829 (2008).

    Article  CAS  Google Scholar 

  3. Lee, J. M., Dedhar, S., Kalluri, R. & Thompson, E. W. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J. Cell Biol. 172, 973–981 (2006).

    Article  CAS  Google Scholar 

  4. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  Google Scholar 

  5. Acloque, H. et al. Reciprocal repression between Sox3 and snail transcription factors defines embryonic territories at gastrulation. Dev. Cell 21, 546–558 (2011).

    Article  CAS  Google Scholar 

  6. Nieto, M.A. The ins and outs of the epithelial to mesenchymal transition in health and disease. Ann. Rev. Cell Dev. Biol. 27, 347–376 (2011).

    Article  CAS  Google Scholar 

  7. Thompson, E. W. & Williams, E. D. EMT and MET in carcinoma–clinical observations, regulatory pathways and new models. Clin. Exp. Meta. 25, 591–592 (2008).

    Article  Google Scholar 

  8. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    Article  CAS  Google Scholar 

  9. Polyak, K. & Weinberg, R. A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265–273 (2009).

    Article  CAS  Google Scholar 

  10. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601 (2008).

    Article  CAS  Google Scholar 

  11. Park, S. M., Gaur, A. B., Lengyel, E. & Peter, M. E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907 (2008).

    Article  CAS  Google Scholar 

  12. Korpal, M., Lee, E. S., Hu, G. & Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283, 14910–14914 (2008).

    Article  CAS  Google Scholar 

  13. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008).

    Article  CAS  Google Scholar 

  14. Medici, D., Hay, E. D. & Olsen, B. R. Snail and Slug promote epithelial-mesenchymal transition through β-catenin-T-cell factor-4-dependent expression of transforming growth factor-β3. Mol. Biol. Cell 19, 4875–4887 (2008).

    Article  CAS  Google Scholar 

  15. Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat. Cell Biol. 11, 1487–1495 (2009).

    Article  CAS  Google Scholar 

  16. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  Google Scholar 

  17. Cano, A. et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2, 76–83 (2000).

    Article  CAS  Google Scholar 

  18. Liu, Y. N. et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene (2012).

  19. Liu, Y. N. et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor β-initiated prostate cancer epithelial-mesenchymal transition. Mol. Cell. Biol. 32, 941–953 (2012).

    Article  Google Scholar 

  20. Guo, W. et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 148, 1015–1028 (2012).

    Article  CAS  Google Scholar 

  21. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  Google Scholar 

  22. Sharrocks, A. D. The ETS-domain transcription factor family. Nat. Rev. Mol. Cell Biol. 2, 827–837 (2001).

    Article  CAS  Google Scholar 

  23. Hollenhorst, P. C., McIntosh, L. P. & Graves, B. J. Genomic and biochemical insights into the specificity of ETS transcription factors. Ann. Rev. Biochem. 80, 437–471 (2011).

    Article  CAS  Google Scholar 

  24. Desmaze, C. et al. Multiple chromosomal mechanisms generate an EWS/FLI1 or an EWS/ERG fusion gene in Ewing tumors. Cancer Genet. Cytogenet. 97, 12–19 (1997).

    Article  CAS  Google Scholar 

  25. Dittmer, J. & Nordheim, A. Ets transcription factors and human disease. Biochim. Biophys. Acta 1377, F1–F11 (1998).

    CAS  PubMed  Google Scholar 

  26. Peter, M. et al. A new member of the ETS family fused to EWS in Ewing tumors. Oncogene 14, 1159–1164 (1997).

    Article  CAS  Google Scholar 

  27. Sharrocks, A. D., Brown, A. L., Ling, Y. & Yates, P. R. The ETS-domain transcription factor family. Int. J. Biochem. Cell Biol. 29, 1371–1387 (1997).

    Article  CAS  Google Scholar 

  28. Oikawa, T. & Yamada, T. Molecular biology of the Ets family of transcription factors. Gene 303, 11–34 (2003).

    Article  CAS  Google Scholar 

  29. Sapi, E., Flick, M. B., Rodov, S. & Kacinski, B. M. Ets-2 transdominant mutant abolishes anchorage-independent growth and macrophage colony-stimulating factor-stimulated invasion by BT20 breast carcinoma cells. Cancer Res. 58, 1027–1033 (1998).

    CAS  PubMed  Google Scholar 

  30. Sementchenko, V. I., Schweinfest, C. W., Papas, T. S. & Watson, D. K. ETS2 function is required to maintain the transformed state of human prostate cancer cells. Oncogene 17, 2883–2888 (1998).

    Article  CAS  Google Scholar 

  31. Feldman, R. J., Sementchenko, V. I., Gayed, M., Fraig, M. M. & Watson, D. K. Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Res. 63, 4626–4631 (2003).

    CAS  PubMed  Google Scholar 

  32. Zhou, J. et al. A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11p13-15, a region subject to LOH and rearrangement in human carcinoma cell lines. Oncogene 17, 2719–2732 (1998).

    Article  CAS  Google Scholar 

  33. Ma, X. J. et al. Gene expression profiles of human breast cancer progression. Proc. Natl Acad. Sci. USA 100, 5974–5979 (2003).

    Article  CAS  Google Scholar 

  34. Zhou, J. et al. Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO J. 24, 635–644 (2005).

    Article  CAS  Google Scholar 

  35. Oakes, S. R. et al. The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev. 22, 581–586 (2008).

    Article  CAS  Google Scholar 

  36. Choi, Y. S., Chakrabarti, R., Escamilla-Hernandez, R. & Sinha, S. Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev. Biol. 329, 227–241 (2009).

    Article  CAS  Google Scholar 

  37. Chakrabarti, R. et al. Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells 30, 1496–1508 (2012).

    Article  CAS  Google Scholar 

  38. Herschkowitz, J. I. et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Gen. Biol. 8, R76 (2007).

    Article  Google Scholar 

  39. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  Google Scholar 

  40. Taube, J. H. et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl Acad. Sci. USA 107, 15449–15454 (2010).

    Article  CAS  Google Scholar 

  41. Blick, T. et al. Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. J. Mammary Gland Biol. Neoplasia 15, 235–252 (2010).

    Article  Google Scholar 

  42. Hoeflich, K. P. et al. In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin. Cancer Res. 15, 4649–4664 (2009).

    Article  CAS  Google Scholar 

  43. Nouhi, Z. et al. Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res. 66, 1824–1832 (2006).

    Article  CAS  Google Scholar 

  44. Escamilla-Hernandez, R. et al. Genome-wide search identifies Ccnd2 as a direct transcriptional target of Elf5 in mouse mammary gland. BMC Mol. Biol. 11, 68 (2010).

    Article  Google Scholar 

  45. Casas, E. et al. Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 71, 245–254 (2011).

    Article  CAS  Google Scholar 

  46. Turashvili, G. et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7, 55 (2007).

    Article  Google Scholar 

  47. Lee, S. et al. Alterations of gene expression in the development of early hyperplastic precursors of breast cancer. Am. J. Pathol. 171, 252–262 (2007).

    Article  CAS  Google Scholar 

  48. Van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J Med. 347, 1999–2009 (2002).

    Article  CAS  Google Scholar 

  49. Gyorffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treatment 123, 725–731 (2010).

    Article  Google Scholar 

  50. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005).

    Article  CAS  Google Scholar 

  51. DeNardo, D. G. et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009).

    Article  CAS  Google Scholar 

  52. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005).

    Article  CAS  Google Scholar 

  53. Miller, F. R., Miller, B. E. & Heppner, G. H. Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Inv. Metastasis 3, 22–31 (1983).

    CAS  Google Scholar 

  54. Guy, C. T. et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA 89, 10578–10582 (1992).

    Article  CAS  Google Scholar 

  55. Valastyan, S. & Weinberg, R. A. Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275–292 (2011).

    Article  CAS  Google Scholar 

  56. Sethi, N. & Kang, Y. Dysregulation of developmental pathways in bone metastasis. Bone 48, 16–22 (2011).

    Article  CAS  Google Scholar 

  57. Lim, E. et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 12, R21 (2010).

    Article  Google Scholar 

  58. Nieto, M. A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 3, 155–166 (2002).

    Article  CAS  Google Scholar 

  59. Martin, T. A., Goyal, A., Watkins, G. & Jiang, W. G. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann. Surg. Oncol. 12, 488–496 (2005).

    Article  Google Scholar 

  60. Proia, T. A. et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell. Stem Cell 8, 149–163 (2011).

    Article  CAS  Google Scholar 

  61. Battula, V. L. et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28, 1435–1445 (2010).

    Article  CAS  Google Scholar 

  62. Lu, X. et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors. Cancer Cell 20, 701–714 (2011).

    Article  CAS  Google Scholar 

  63. Mootha, V. K. et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115, 629–640 (2003).

    Article  CAS  Google Scholar 

  64. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  65. Naylor, M. J. et al. Ablation of β1 integrin in mammary epithelium reveals a key role for integrin in glandular morphogenesis and differentiation. J. Cell Biol. 171, 717–728 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Korpal, B. I. Koh, H. Zheng and B. Ell for helpful discussions, M. Yuan and X. Hang for technical assistance, C. DeCoste for assistance with flow cytometry, J. Goodhouse for assistance with confocal microscopy and L. Cong and J. Friedman at the Tissue Analytic Service Core of Cancer Institute of New Jersey for assistance with clinical breast tumour sample immunohistochemistry analysis. This research was supported by grants from R01GM069417 to S.S., from the Breast Cancer Research Foundation to B.G.H. and Y.K. and from the Brewster Foundation, the Champalimaud Foundation, Komen for the Cure and the National Institutes of Health (R01CA134519 and R01CA141062) to Y.K. R.C. is a recipient of a DOD postdoctoral fellowship (W81XWH-11-1-0681) and M.A.B. is a recipient of an NRSA pre-doctoral fellowship from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

R.C., S.S. and Y.K. designed experiments. R.C., M.A.B., J.H., Y.W. and M.L. performed the experiments. R.R., K.S., S.L., Q.Y., T.I., L.M., D.A. and B.G.H. provided technical support. R.C., M.A.B. and Y.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Julie Hwang, Mario Andres Blanco, Qifeng Yang, Satrajit Sinha or Yibin Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2775 kb)

Supplementary Table 1

Supplementary Information (XLS 33 kb)

Supplementary Table 2

Supplementary Information (XLS 34 kb)

Supplementary Table 3

Supplementary Information (XLS 33 kb)

Supplementary Table 4

Supplementary Information (XLS 32 kb)

Supplementary Table 5

Supplementary Information (XLS 32 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, R., Hwang, J., Andres Blanco, M. et al. Elf5 inhibits the epithelial–mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol 14, 1212–1222 (2012). https://doi.org/10.1038/ncb2607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2607

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer