Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL

Abstract

Von Hippel-Lindau (VHL) tumour suppressor gene inactivation is linked to the development of haemangioblastomas in the central nervous system and retina, often in association with other tumours, such as clear-cell carcinomas of the kidney and phaeochromocytomas. Here we show that the VHL protein (pVHL) is a microtubule-associated protein that can protect microtubules from depolymerization in vivo. Both the microtubule binding and stabilization functions of pVHL depend on amino acids 95–123 of pVHL, a mutational 'hot-spot' in VHL disease. From analysis of naturally occurring pVHL mutants, it seems that only point mutations such as pVHLY98H and pVHLY112H (that predispose to haemangioblastoma and phaeochromocytoma, but not to renal cell carcinoma) disrupt pVHL's microtubule-stabilizing function. Our data identify a role for pVHL in the regulation of microtubule dynamics and potentially provide a link between this function of pVHL and the pathogenesis of haemangioblastoma and phaeochromocytoma in the context of VHL disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: pVHL30 associates with the microtubule network in vivo.
Figure 3: Amino acids 95–123 of pVHL are required for microtubule stabilization and binding.
Figure 2: Expression of pVHL prevents nocodazole-induced microtubule depolymerization.
Figure 4: Type 2A mutations of pVHL are defective in microtubule stabilization function.
Figure 5: Type 2A pVHL mutations fail to promote microtubule stabilization in VHL-deficient cells.

Similar content being viewed by others

References

  1. Kaelin, W. G. Molecular basis of the VHL hereditary cancer syndrome. Nature Rev. Cancer 2, 673–682 (2002).

    Article  CAS  Google Scholar 

  2. Iliopoulos, O., Ohh, M. & Kaelin, W. G., Jr. pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc. Natl Acad. Sci. USA 95, 11661–11666 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Blankenship, C., Naglich, J. G., Whaley, J. M., Seizinger, B. & Kley, N. Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity. Oncogene 18, 1529–1535 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Schoenfeld, A., Davidowitz, E. J. & Burk, R. D. A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc. Natl Acad. Sci. USA 95, 8817–8822 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao, J. et al. Cloning and characterization of a mouse gene with homology to the human von Hippel-Lindau disease tumor suppressor gene: implications for the potential organization of the human von Hippel-Lindau disease gene. Cancer Res. 55, 743–747 (1995).

    CAS  PubMed  Google Scholar 

  6. Iliopoulos, O., Levy, A. P., Jiang, C., Kaelin, W. G. Jr., & Goldberg, M. A. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc. Natl Acad. Sci. USA 93, 10595–10599 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    CAS  PubMed  Google Scholar 

  8. Kamura, T. et al. Activation of HIF1α ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc. Natl Acad. Sci. USA 97, 10430–10435 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nature Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Cockman, M. E. et al. Hypoxia inducible factor-α binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J. Biol. Chem. 275, 25733–25741 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Clifford, S. C. et al. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum. Mol. Genet. 10, 1029–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hoffman, M. A. et al. von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 10, 1019–1027 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S. et al. Nuclear/cytoplasmic localization of the von Hippel-Lindau tumor suppressor gene product is determined by cell density. Proc. Natl Acad. Sci. USA 93, 1770–1775 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee, S. et al. Transcription-dependent nuclear-cytoplasmic trafficking is required for the function of the von Hippel-Lindau tumor suppressor protein. Mol. Cell Biol. 19, 1486–1497 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pause, A. et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl Acad. Sci. USA 94, 2156–2161 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Duan, D. R. et al. Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc. Natl Acad. Sci. USA 92, 6459–6463 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Groulx, I., Bonicalzi, M. E. & Lee, S. Ran-mediated nuclear export of the von Hippel-Lindau tumor suppressor protein occurs independently of its assembly with cullin-2. J. Biol. Chem. 275, 8991–9000 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W. G., Jr. Tumour suppression by the human von Hippel-Lindau gene product. Nature Med. 1, 822–826 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Ohh, M. et al. The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol. Cell 1, 959–968 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Shiao, Y. H., Resau, J. H., Nagashima, K., Anderson, L. M. & Ramakrishna, G. The von Hippel-Lindau tumor suppressor targets to mitochondria. Cancer Res. 60, 2816–2819 (2000).

    CAS  PubMed  Google Scholar 

  21. Los, M. et al. Expression pattern of the von Hippel-Lindau protein in human tissues. Lab. Invest. 75, 231–238 (1996).

    CAS  PubMed  Google Scholar 

  22. Corless, C. L., Kibel, A. S., Iliopoulos, O. & Kaelin, W. G., Jr. Immunostaining of the von Hippel-Lindau gene product in normal and neoplastic human tissues. Hum. Pathol. 28, 459–464 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Ye, Y. et al. Subcellular localization of the von Hippel-Lindau disease gene product is cell cycle-dependent. Int. J. Cancer 78, 62–69 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Schoenfeld, A. R., Davidowitz, E. J. & Burk, R. D. Endoplasmic reticulum/cytosolic localization of von Hippel-Lindau gene products is mediated by a 64-amino acid region. Int. J. Cancer 91, 457–467 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M. & Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev. 13, 1822–1833 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Bradley, J. F., Collins, D. L., Schimke, R. N., Parrott, H. N. & Rothberg, P. G. Two distinct phenotypes caused by two different missense mutations in the same codon of the VHL gene. Am. J. Med. Genet. 87, 163–167 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Brauch, H. et al. Von Hippel-Lindau (VHL) disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum. Genet. 95, 551–556 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, F. et al. Germline mutations in the von Hippel-Lindau disease tumor suppressor gene: correlations with phenotype. Hum. Mutat. 5, 66–75 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Crossey, P. A. et al. Identification of intragenic mutations in the von Hippel-Lindau disease tumour suppressor gene and correlation with disease phenotype. Hum. Mol. Genet. 3, 1303–1308 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Zbar, B. et al. Germline mutations in the Von Hippel-Lindau disease (VHL) gene in families from North America, Europe, and Japan. Hum. Mutat. 8, 348–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Eng, C. et al. Mutations in the RET proto-oncogene and the von Hippel-Lindau disease tumour suppressor gene in sporadic and syndromic phaeochromocytomas. J. Med. Genet. 32, 934–937 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beroud, C. J. D., Gallou, C., Staroz, F., Orfanelli, M.T. & Junien, C. Software and database for the analysis of mutations in the VHL gene. Nucleic Acids Research 26, 256–258 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brauch, H. et al. VHL alterations in human clear cell renal cell carcinoma: association with advanced tumor stage and a novel hot spot mutation. Cancer Res. 60, 1942–1948 (2000).

    CAS  PubMed  Google Scholar 

  35. Reichardt, P. et al. Recurrent polytopic chromaffin paragangliomas in a 9-year-old boy resulting from a novel germline mutation in the von Hippel-Lindau gene. J. Pediatr. Hematol. Oncol. 24, 145–148 (2002).

    Article  PubMed  Google Scholar 

  36. Groulx, I. & Lee, S. Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein. Mol. Cell. Biol. 22, 5319–5336 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krek, W. & Nigg, E. A. Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J. 10, 3331–3341 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lisztwan, J. et al. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 17, 368–383 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of our laboratory for discussions. We also thank H. Angliker and M. Pietrzak for sequencing, P. Mueller for synthesis of oligonucleotides, F. Fischer for peptide synthesis, A. Matus and J. Rohrer for Tu27b, anti-CLIMP63 and anti-ERGIC-53 antibodies, M. Heinlein for COS-7 cells and R. Bernards for PT67 cells. Special thanks go to P. Ratcliffe for providing pcDNA3-HA-VHL30-R82P, -P86H, -N90I, -Q96P and -Y112H plasmids. We are thankful to G. Thomas, U. Mueller, J. Paszkowski, F. Lehembre and P. Staller for careful reading of the manuscript. This work was supported by the Dr. Josef Steiner Foundation, the Robert Wenner Award and the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Krek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure

Figure S1. Schematic representation of the FKBP38 deletion derivatives. (PDF 1319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hergovich, A., Lisztwan, J., Barry, R. et al. Regulation of microtubule stability by the von Hippel-Lindau tumour suppressor protein pVHL. Nat Cell Biol 5, 64–70 (2003). https://doi.org/10.1038/ncb899

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing