Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distinct endocytic pathways regulate TGF-β receptor signalling and turnover

An Erratum to this article was published on 01 July 2003

Abstract

Endocytosis of cell surface receptors is an important regulatory event in signal transduction. The transforming growth factor β (TGF-β) superfamily signals to the Smad pathway through heteromeric Ser-Thr kinase receptors that are rapidly internalized and then downregulated in a ubiquitin-dependent manner. Here we demonstrate that TGF-β receptors internalize into both caveolin- and EEA1-positive vesicles and reside in both lipid raft and non-raft membrane domains. Clathrin-dependent internalization into the EEA1-positive endosome, where the Smad2 anchor SARA is enriched, promotes TGF-β signalling. In contrast, the lipid raft-caveolar internalization pathway contains the Smad7-Smurf2 bound receptor and is required for rapid receptor turnover. Thus, segregation of TGF-β receptors into distinct endocytic compartments regulates Smad activation and receptor turnover.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TGF-β receptors localize to both Cav-1 and EEA1 positive compartments.
Figure 2: Dominant negative mutants of Dynamin or Eps15 modulate TGF-β receptor colocalization in subcellular compartments.
Figure 3: TGF-β receptor signal transduction and turnover is dependent on distinct subcellular compartments.
Figure 4: SARA and Smad7 (Smurf2) localize to distinct subcellular 0compartments.
Figure 5: Receptor binding proteins that associate with raft fractions stimulate receptor complex turnover.
Figure 6: SARA interferes with receptor complex degradation.
Figure 7: Sequestering of TGF-β receptors from lipid rafts permits signal transduction.

Similar content being viewed by others

References

  1. Gruenberg, J. The endocytic pathway: a mosaic of domains. Nature Rev. Mol. Cell Biol. 2, 721–730 (2001).

    Article  CAS  Google Scholar 

  2. Baass, P.C., Di Guglielmo, G.M., Authier, F., Posner, B.I. & Bergeron, J.J.M. Compartmentalized signal transduction by tyrosine kinases. Trends Cell Biol. 5, 465–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Di Fiore, P.P. & De Camilli, P. Endocytosis and signaling. an inseparable partnership. Cell 106, 1–4 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. McPherson, P.S., Kay, B.K. & Hussain, N.K. Signaling on the endocytic pathway. Traffic 2, 375–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Katzmann, D.J., Babst, M. & Emr, S.D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Sharma, P., Sabharanjak, S. & Mayor, S. Endocytosis of lipid rafts: an identity crisis. Sem. in Cell Dev. Biol. 13, 205–214 (2002).

    Article  CAS  Google Scholar 

  7. Anderson, R.G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  Google Scholar 

  9. Anderson, R.G., Kamen, B.A., Rothberg, K.G. & Lacey, S.W. Potocytosis: sequestration and transport of small molecules by caveolae. Science 255, 410–411 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Razani, B., Schlegel, A. & Lisanti, M.P. Caveolin proteins in signaling, oncogenic transformation and muscular dystrophy. J. Cell Sci. 113, 2103–2109 (2000).

    CAS  PubMed  Google Scholar 

  11. Pelkmans, L., Kartenbeck, J. & Helenius, A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nature Cell Biol. 3, 473–483 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nichols, B.J. A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nature Cell Biol. 4, 374–378 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Le, P.U., Guay, G., Altschuler, Y. & Nabi, I.R. Caveolin-1 is a negative regulator of caveolae-mediated endocytosis to the endoplasmic reticulum. J. Biol. Chem. 277, 3371–3379 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Smart, E.J. et al. Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19, 7289–7304 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prevostel, C., Alice, V., Joubert, D. & Parker, P.J. Protein kinase Cα actively downregulates through caveolae- dependent traffic to an endosomal compartment. J. Cell Sci. 113, 2575–2584 (2000).

    CAS  PubMed  Google Scholar 

  16. Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Massague, J. TGF-β signal transduction. Annu Rev Biochem 67, 753–791 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Wrana, J.L., Attisano, L., Wieser, R., Ventura, F. & Massague, J. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Miyazono, K., ten Dijke, P. & Heldin, C.H. TGF-β and signaling by Smad proteins. Adv. Immunol. 75, 115–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Tsukazaki, T., Chiang, T.A., Davison, A.F., Attisano, L. & Wrana, J.L. SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor. Cell 95, 779–791 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGF-β signaling. Cell 89, 1165–1173 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Imamura, T. et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 389, 622–626 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Nakao, A. et al. Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signalling. Nature 389, 631–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Ebisawa, T. et al. Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276, 12477–12480 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF β receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ehrlich, M., Shmuely, A. & Henis, Y.I. A single internalization signal from the di-leucine family is critical for constitutive endocytosis of the type II TGF-β receptor. J. Cell Sci. 114, 1777–1786 (2001).

    CAS  PubMed  Google Scholar 

  27. Hayes, S., Chawla, A. & Corvera, S. TGF β receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J. Cell Biol. 158, 1239–1249 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Penheiter, S.G. et al. Internalization-dependent and -independent requirements for transforming growth factor β receptor signaling via the Smad pathway. Mol. Cell Biol. 22, 4750–4759 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Itoh, F. et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-β-Smad signalling. Genes Cells 7, 321–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Panopoulou, E. et al. Early endosomal regulation of Smad-dependent signaling in endothelial cells. J. Biol. Chem. 4, 18046–18052 (2002).

    Article  Google Scholar 

  31. Razani, B. et al. Caveolin-1 regulates transforming growth factor (TGF)-β-SMAD signaling through an interaction with the TGF-β type I receptor. J. Biol. Chem. 276, 6727–6738 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Zwaagstra, J.C., El-Alfy, M. & O'Connor-McCourt, M.D. Transforming growth factor (TGF)-β 1 internalization: modulation by ligand interaction with TGF-β receptors types I and II and a mechanism that is distinct from clathrin-mediated endocytosis. J. Biol. Chem. 276, 27237–27245 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. de Renzis, S., Sonnichsen, B. & Zerial, M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell. Biol. 4, 124–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Sanchez, P., De Carcer, G., Sandoval, I.V., Moscat, J. & Diaz-Meco, M.T. Localization of atypical protein kinase C isoforms into lysosome- targeted endosomes through interaction with p62. Mol. Cell. Biol. 18, 3069–3080 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubino, M., Miaczynska, M., Lippe, R. & Zerial, M. Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. McCabe, J.B. & Berthiaume, L.G. N-terminal protein acylation confers localization to cholesterol, sphingolipid-enriched membranes but not to lipid rafts-caveolae. Mol. Biol. Cell 12, 3601–3617 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rodal, S.K. et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10, 961–974 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Subtil, A. et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl Acad. Sci. USA 96, 6775–6780 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ros-Baro, A. et al. Lipid rafts are required for GLUT4 internalization in adipose cells. Proc. Natl Acad. Sci. USA 98, 12050–12055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torgersen, M.L., Skretting, G., van Deurs, B. & Sandvig, K. Internalization of cholera toxin by different endocytic mechanisms. J. Cell Sci. 114, 3737–3747 (2001).

    CAS  PubMed  Google Scholar 

  41. Benmerah, A. et al. AP-2-Eps15 interaction is required for receptor-mediated endocytosis. J. Cell Biol. 140, 1055–1062 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127, 915–934 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Henley, J.R., Krueger, E.W., Oswald, B.J. & McNiven, M.A. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141, 85–99 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, Z. et al. Transforming growth factor β activates Smad2 in the absence of receptor endocytosis. J. Biol. Chem. 277, 29363–29368 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Levkowitz, G. et al. c-Cbl-Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663–3674 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lamaze, C. et al. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7, 661–671 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Anderson, H.A., Chen, Y. & Norkin, L.C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7, 1825–1834 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Plant, P.J. et al. Apical membrane targeting of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J. Cell Biol. 149, 1473–1484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Miura, S. et al. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol. Cell Biol. 20, 9346–9355 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raiborg, C., Bache, K.G., Mehlum, A., Stang, E. & Stenmark, H. Hrs recruits clathrin to early endosomes. EMBO J. 20, 5008–5021 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S. Hearn (Mount Sinai Hospital, Toronto, EM facilities), J. Mui and J. Bergeron and A. Vali (Anatomy Cell Biology, McGill Montreal, EM Centre) and S. Doyle (Microscopy Imaging Laboratory, University of Toronto, EM facilities) for their assistance with the electron microscopy studies. The authors would also like to thank J. Bergeron, H. Benchabane, P. Cameron, R. Rasmussen and P. Kavsak for helpful advice, S. Kulkarni for help with deconvolution microscopy and L. Attisano and P. Cameron for critical review of the manuscript as well as L. Black, M. Pye and the members of the Wrana lab for assistance. This work was supported by grants to J. L. W. from the CIHR and the National Cancer Institute with funds from the Terry Fox run. C. L. R. is a Postdoctoral Fellow of the CIHR and J.L.W. is an International Investigator of the HHMI and an Investigator of the CIHR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Wrana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1. TGFβ receptors and biotinylated TGFβ co-localize to the EEA1 or Caveolin- 1 positive compartment. (PDF 12603 kb)

Fig. S2. TGFβ receptors do not co-localize with the late endosomal compartment, but partially co-localize with the recycling compartment.

Fig. S3. Ultrastructural and immunoelectron microscopy of TβRII.

Fig. S4. Comparison of transferrin and TGFβ ligand internalization.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Guglielmo, G., Le Roy, C., Goodfellow, A. et al. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat Cell Biol 5, 410–421 (2003). https://doi.org/10.1038/ncb975

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing