Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomerase modulates expression of growth-controlling genes and enhances cell proliferation

Abstract

Most somatic cells do not express sufficient amounts of telomerase to maintain a constant telomere length during cycles of chromosome replication. Consequently, there is a limit to the number of doublings somatic cells can undergo before telomere shortening triggers an irreversible state of cellular senescence1,2. Ectopic expression of telomerase overcomes this limitation, and in conjunction with specific oncogenes can transform cells to a tumorigenic phenotype3. However, recent studies have questioned whether the stabilization of chromosome ends entirely explains the ability of telomerase to promote tumorigenesis and have resulted in the hypothesis that telomerase has a second function that also supports cell division4,5,6,7,8,9,10,11. Here we show that ectopic expression of telomerase in human mammary epithelial cells (HMECs) results in a diminished requirement for exogenous mitogens and that this correlates with telomerase-dependent induction of genes that promote cell growth. Furthermore, we show that inhibiting expression of one of these genes, the epidermal growth factor receptor (EGFR), reverses the enhanced proliferation caused by telomerase. We conclude that telomerase may affect proliferation of epithelial cells not only by stabilizing telomeres, but also by affecting the expression of growth-promoting genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalytically active hTERT provides a growth advantage in MM.
Figure 2: Gene expression in hTERT-HMECs and controls.
Figure 3: Inhibition of EGFR decreases proliferation of hTERT-HMECs in MM.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Stewart, S.A. & Weinberg, R.A. Senescence: does it all happen at the ends? Oncogene 21, 627–630 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Granger, M.P., Wright, W.E. & Shay, J.W. Telomerase in cancer and aging. Crit. Rev. Oncol. Hematol. 41, 29–40 (2002).

    Article  PubMed  Google Scholar 

  3. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Artandi, S.E. et al. Constitutive telomerase expression promotes mammary carcinomas in aging mice. Proc. Natl Acad. Sci. USA 99, 8191–8196 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez-Suarez, E. et al. Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J. 20, 2619–2630 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stewart, S.A. et al. Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc. Natl Acad. Sci. USA 99, 12606–12611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blasco, M.A. Telomerase beyond telomeres. Nature Rev. Cancer 2, 627–633 (2002).

    Article  CAS  Google Scholar 

  8. Chang, S. & DePinho, R.A. Telomerase extracurricular activities. Proc. Natl Acad. Sci. USA 99, 12520–12522 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gonzalez-Suarez, E., Samper, E., Flores, J.M. & Blasco, M.A. Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nature Genet. 26, 114–117 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl Acad. Sci. USA 98, 10308–10313 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stampfer, M.R. et al. Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor β growth inhibition in p16INK4A(-) human mammary epithelial cells. Proc. Natl Acad. Sci. USA 98, 4498–4503 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Shay, J.W. & Bacchetti, S. A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Kiyono, T. et al. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Valverius, E.M. et al. Transforming growth factor α production and epidermal growth factor receptor expression in normal and oncogene transformed human mammary epithelial cells. Mol. Endocrinol. 3, 203–214 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Pavlidis, P. & Noble, W.S. Analysis of strain and regional variation in gene expression in mouse brain. Genome Biol. 2, (cited 27 September 2001) http://genomebiology.com/2001/2/10/research/0042 (2001).

  17. Shelton, D.N., Chang, E., Whittier, P.S., Choi, D. & Funk, W.D. Microarray analysis of replicative senescence. Curr. Biol. 9, 939–945 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kim, H. & Muller, W.J. The role of the epidermal growth factor receptor family in mammary tumorigenesis and metastasis. Exp. Cell Res. 253, 78–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Ornitz, D.M. & Itoh, N. Fibroblast growth factors. Genome Biol. 2, (cited 9 March 2001) http://genomebiology.com/2001/2/3/reviews/3005 (2001).

  20. Allan, A.L., Albanese, C., Pestell, R.G. & LaMarre, J. Activating transcription factor 3 induces DNA synthesis and expression of cyclin D1 in hepatocytes. J. Biol. Chem. 276, 27272–27280 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Ishiguro, T. & Nagawa, H. Expression of the ATF3 gene on cell lines and surgically excised specimens. Oncol. Res. 12, 181–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Reimold, A.M. et al. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14, 152–157 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Arend, W.P., Malyak, M., Guthridge, C.J. & Gabay, C. Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol. 16, 27–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Brown, E.J. & Frazier, W.A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Sargiannidou, I., Zhou, J. & Tuszynski, G.P. The role of thrombospondin-1 in tumor progression. Exp. Biol. Med. 226, 726–733 (2001).

    Article  CAS  Google Scholar 

  26. Luparello, C. et al. Midregion parathyroid hormone-related protein inhibits growth and invasion in vitro and tumorigenesis in vivo of human breast cancer cells. J. Bone Miner. Res. 16, 2173–2181 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava, R.K. TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3, 535–546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bates, S.E. et al. Expression of the transforming growth factor-α/epidermal growth factor receptor pathway in normal human breast epithelial cells. Endocrinology 126, 596–607 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Hahn, W.C. et al. Inhibition of telomerase limits the growth of human cancer cells. Nature Med. 5, 1164–1170 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Romanov, S.R. et al. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Brem, L. Kruglyak, A. Klingelhutz and R. DePinho for advice, assistance and helpful discussions; members of the Fred Hutchinson Cancer Research Center array facility (J. Delrow, C. Neal, R. Bassom and D. O'Hare); E. Bryant of the Seattle Cancer Care Alliance cytogenetics laboratory; Z. Fan for monoclonal antibody 225 against EGFR; and R. Weinberg for plasmids encoding hTERT and DNhTERT. We also thank J. Grim and B. Clurman for helpful suggestions and the pBABE vector used for shRNA experiments. H.A.C. acknowledges postdoctoral fellowships from the Jane Coffin Childs Memorial Fund and the Leukemia Lymphoma Society. L.L.S. acknowledges a postdoctoral fellowship from the National Institutes of Health (#1 F32 CA83311-01). J.M.R. is an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Roberts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary methods, legend to table, supplementary figures S1 and S2 (PDF 64 kb)

Figure 2 (extended legend) (DOC 20 kb)

Supplementary table (XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, L., Coller, H. & Roberts, J. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 5, 474–479 (2003). https://doi.org/10.1038/ncb985

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing