Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb

Abstract

The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-OH kinase (PI(3)K)/Akt pathways are involved in the regulatory mechanisms of several cellular processes including proliferation, differentiation and apoptosis. Here we show that during chick, mouse and zebrafish limb/fin development, a known MAPK/ERK regulator, Mkp3, is induced in the mesenchyme by fibroblast growth factor 8 (FGF8) signalling, through the PI(3)K/Akt pathway. This correlates with a high level of phosphorylated ERK in the apical ectodermal ridge (AER), where Mkp3 expression is excluded. Conversely, phosphorylated Akt is detected only in the mesenchyme. Constitutively active Mek1, as well as the downregulation of Mkp3 by small interfering RNA (siRNA), induced apoptosis in the mesenchyme. This suggests that MKP3 has a key role in mediating the proliferative, anti-apoptotic signalling of AER-derived FGF8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mkp3 belongs to a synexpression group regulated by FGF8.
Figure 2: FGF8 is necessary for Mkp3 expression in vertebrate limb/fin buds.
Figure 3: Transcriptional regulation of Mkp3 by the PI(3)K/Akt pathway and phosphorylation of ERK and Akt in the developing limb bud.
Figure 4: Misregulation of MKP3 activity impairs normal limb development.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Goldfarb, M. Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Rev. 7, 311–325 (1996).

    Article  CAS  Google Scholar 

  2. Ng, J.K., Tamura, K., Buscher, D. & Izpisua-Belmonte, J.C. Molecular and cellular basis of pattern formation during vertebrate limb development. Curr. Top. Dev. Biol. 41, 37–66 (1999).

    Article  CAS  Google Scholar 

  3. Capdevila, J. & Izpisua Belmonte, J.C. Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol. 17, 87–132 (2001).

    Article  CAS  Google Scholar 

  4. Niswander, L. Pattern formation: old models out on a limb. Nature Rev. Genet. 4, 133–143 (2003).

    Article  CAS  Google Scholar 

  5. Martin, G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  Google Scholar 

  6. Javerzat, S., Auguste, P. & Bikfalvi, A. The role of fibroblast growth factors in vascular development. Trends Mol. Med. 8, 483–489 (2002).

    Article  CAS  Google Scholar 

  7. Muda, M. et al. MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J. Biol. Chem. 271, 4319–4326 (1996).

    Article  CAS  Google Scholar 

  8. Groom, L.A., Sneddon, A.A., Alessi, D.R., Dowd, S. & Keyse, S.M. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J. 15, 3621–3632 (1996).

    Article  CAS  Google Scholar 

  9. Mourey, R.J. et al. A novel cytoplasmic dual specificity protein tyrosine phosphatase implicated in muscle and neuronal differentiation. J. Biol. Chem. 271, 3795–3802 (1996).

    Article  CAS  Google Scholar 

  10. Smith, A. et al. Chromosomal localization of three human dual specificity phosphatase genes (DUSP4, DUSP6, and DUSP7). Genomics 42, 524–527 (1997).

    Article  CAS  Google Scholar 

  11. Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999).

    Article  CAS  Google Scholar 

  12. Powers, C.J., McLeskey, S.W. & Wellstein, A. Fibroblast growth factors, their receptors and signaling. Endocr. Relat. Cancer 7, 165–197 (2000).

    Article  CAS  Google Scholar 

  13. Xu, X. et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 125, 753–765 (1998).

    CAS  PubMed  Google Scholar 

  14. Muda, M. et al. The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J. Biol. Chem. 271, 27205–27208 (1996).

    Article  CAS  Google Scholar 

  15. Tsang, M., Friesel, R., Kudoh, T. & Dawid, I.B. Identification of Sef, a novel modulator of FGF signalling. Nature Cell Biol. 4, 165–169 (2002).

    Article  CAS  Google Scholar 

  16. Furthauer, M., Lin, W., Ang, S.L., Thisse, B. & Thisse, C. Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nature Cell Biol. 4, 170–174 (2002).

    Article  CAS  Google Scholar 

  17. Yordy, J.S. & Muise-Helmericks, R.C. Signal transduction and the Ets family of transcription factors. Oncogene 19, 6503–6513 (2000).

    Article  CAS  Google Scholar 

  18. Fernandez-Teran, M., Piedra, M.E., Simandl, B.K., Fallon, J.F. & Ros, M.A. Limb initiation and development is normal in the absence of the mesonephros. Dev. Biol. 189, 246–255 (1997).

    Article  CAS  Google Scholar 

  19. Stephens, T.D. et al. Axial and paraxial influences on the origin of the chick embryo limb. Prog. Clin. Biol. Res. 383A, 317–326 (1993).

    CAS  PubMed  Google Scholar 

  20. Dickinson, R.J., Eblaghie, M.C., Keyse, S.M. & Morriss-Kay, G.M. Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis. Mech. Dev. 113, 193–196 (2002).

    Article  CAS  Google Scholar 

  21. Klock, A. & Herrmann, B.G. Cloning and expression of the mouse dual-specificity mitogen-activated protein (MAP) kinase phosphatase Mkp3 during mouse embryogenesis. Mech. Dev. 116, 243–247 (2002).

    Article  CAS  Google Scholar 

  22. Vogel, A., Rodriguez, C. & Izpisua-Belmonte, J.C. Involvement of FGF-8 in initiation, outgrowth and patterning of the vertebrate limb. Development 122, 1737–1750 (1996).

    CAS  PubMed  Google Scholar 

  23. Ohuchi, H. & Noji, S. Fibroblast-growth-factor-induced additional limbs in the study of initiation of limb formation, limb identity, myogenesis, and innervation. Cell Tissue Res. 296, 45–56 (1999).

    Article  CAS  Google Scholar 

  24. Isaac, A. et al. FGF and genes encoding transcription factors in early limb specification. Mech. Dev. 93, 41–48 (2000).

    Article  CAS  Google Scholar 

  25. Grieshammer, U., Minowada, G., Pisenti, J.M., Abbott, U.K. & Martin, G.R. The chick limbless mutation causes abnormalities in limb bud dorsal–ventral patterning: implications for the mechanism of apical ridge formation. Development 122, 3851–3861 (1996).

    CAS  PubMed  Google Scholar 

  26. Ros, M.A. et al. The limb field mesoderm determines initial limb bud anteroposterior asymmetry and budding independent of sonic hedgehog or apical ectodermal gene expressions. Development 122, 2319–2330 (1996).

    CAS  PubMed  Google Scholar 

  27. Grandel, H., Draper, B.W. & Schulte-Merker, S. dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. Development 127, 4169–4178 (2000).

    CAS  PubMed  Google Scholar 

  28. Sun, X., Mariani, F.V. & Martin, G.R. Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418, 501–508 (2002).

    Article  CAS  Google Scholar 

  29. Ong, S.H. et al. Stimulation of phosphatidylinositol 3-kinase by fibroblast growth factor receptors is mediated by coordinated recruitment of multiple docking proteins. Proc. Natl Acad. Sci. USA 98, 6074–6079 (2001).

    Article  CAS  Google Scholar 

  30. Aoki, M., Batista, O., Bellacosa, A., Tsichlis, P. & Vogt, P.K. The akt kinase: molecular determinants of oncogenicity. Proc. Natl Acad. Sci. USA 95, 14950–14955 (1998).

    Article  CAS  Google Scholar 

  31. Scheid, M.P. & Woodgett, J.R. PKB/AKT: functional insights from genetic models. Nature Rev. Mol. Cell Biol. 2, 760–768 (2001).

    Article  CAS  Google Scholar 

  32. Brunet, A. et al. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J. 18, 664–674 (1999).

    Article  CAS  Google Scholar 

  33. Dudley, A.T., Ros, M.A. & Tabin, C.J. A re-examination of proximodistal patterning during vertebrate limb development. Nature 418, 539–544 (2002).

    Article  CAS  Google Scholar 

  34. Wang, X., Martindale, J.L. & Holbrook, N.J. Requirement for ERK activation in cisplatin-induced apoptosis. J. Biol. Chem. 275, 39435–39443 (2000).

    Article  CAS  Google Scholar 

  35. Stefanelli, C. et al. Caspase activation in etoposide-treated fibroblasts is correlated to ERK phosphorylation and both events are blocked by polyamine depletion. FEBS Lett. 527, 223–228 (2002).

    Article  CAS  Google Scholar 

  36. Stanciu, M. & DeFranco, D.B. Prolonged nuclear retention of activated extracellular signal-regulated protein kinase promotes cell death generated by oxidative toxicity or proteasome inhibition in a neuronal cell line. J. Biol. Chem. 277, 4010–4017 (2002).

    Article  CAS  Google Scholar 

  37. Wilkinson, D.G. in In Situ Hybridization (ed. Wilkinson, D. G.) 75–83 (Oxford Univ. Press, Oxford, 1992).

    Google Scholar 

  38. Hamburger, V. & Hamilton, H.L. A series of normal stages in the development of the chick embryo. J. Morph. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  39. Harada, T., Morooka, T., Ogawa, S. & Nishida, E. ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nature Cell Biol. 3, 453–459 (2001).

    Article  CAS  Google Scholar 

  40. Barton, G.M. & Medzhitov, R. Retroviral delivery of small interfering RNA into primary cells. Proc. Natl Acad. Sci. USA 99, 14943–14945 (2002).

    Article  CAS  Google Scholar 

  41. McManus, M.T. & Sharp, P.A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet. 3, 737–747 (2002).

    Article  CAS  Google Scholar 

  42. Kanzler, B., Foreman, R.K., Labosky, P.A. & Mallo, M. BMP signaling is essential for development of skeletogenic and neurogenic cranial neural crest. Development 127, 1095–1104 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Martin for providing limb-specific Fgf4;Fgf8 double-knockout mouse embryos, C. Nuesslein Volhard for the mutant zebrafish dackel, M. Aoki and P. Vogt for the constitutively active Akt construct, T. Jessell for the chick Pea3 and Er81 clones, E. Nishida for the constitutively active Mek1 clone, I. Dubova for his expertise and help with zebrafish, G. Sternik for his assistance with the microscopic analyses, and M. Tsuda for assistance with experiments. J.R.L. is supported by a fellowship from the Fundação Calouste Gulbenkian. T.I. is supported by a JSPS Postdoctoral Fellowship for Research Abroad, Japan. C.M.K. is partly supported by a postdoctoral fellowship from the Canadian Institutes of Health Research, J.K.N. is supported by an NIH training grant, and A.R. is partly supported by a postdoctoral fellowship from the Ministerio de Educación, Cultura y Deporte, Spain. H.A. is supported by the Arthritis Foundation and the Japan Science and Technology Cooperation. This work was supported by grants from BioCell, Fundacao Calouste Gulbenkian e Fundacao para Ciencia e Technologia, the Arthritis Foundation, the G. Harold and Leila Y. Mathers Charitable Foundation, the National Science Foundation, and the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Izpisúa Belmonte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, Y., Rodríguez-León, J., Koth, C. et al. MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol 5, 513–519 (2003). https://doi.org/10.1038/ncb989

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb989

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing