Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions

Abstract

To provide insight into how cells receive information from their external surroundings, synthetic hydrogels have emerged as systems for assaying cell function in well-defined microenvironments where single cues can be introduced and subsequent effects individually elucidated. However, as answers to more complex biological questions continue to be sought, advanced material systems are needed that allow dynamic alteration of the three-dimensional cellular environment with orthogonal reactions that enable multiple levels of control of biochemical and biomechanical signals. Here, we seek to synthesize one such three-dimensional culture system using cytocompatible and wavelength-specific photochemical reactions to create hydrogels that allow orthogonal and dynamic control of material properties through independent spatiotemporally regulated photocleavage of crosslinks and photoconjugation of pendant functionalities. The results demonstrate the versatile nature of the chemistry to create programmable niches to study and direct cell function by modifying the local hydrogel environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis, photocoupling and photodegradation for tuning chemical and physical properties of click-based hydrogels.
Figure 2: Biochemical patterning within preformed click hydrogels using visible light.
Figure 3: Biophysical patterning within pre-formed click hydrogels using ultraviolet light.
Figure 4: Orthogonality of photocoupling and photodegradation reactions.
Figure 5: Culture and recovery of hMSCs from hydrogel microenvironments.
Figure 6: Directed three-dimensional cell motility within patterned hydrogels.

Similar content being viewed by others

References

  1. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  2. Kolb, H. C. & Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Discov. Today 8, 1128–1137 (2003).

    Article  CAS  Google Scholar 

  3. Moses, J. E. & Moorhouse, A. D. The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).

    Article  CAS  Google Scholar 

  4. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  5. Barner-Kowollik, C. et al. ‘Clicking’ polymers or just efficient linking: what is the difference? Angew. Chem. Int. Ed. 50, 60–62 (2011).

    Article  CAS  Google Scholar 

  6. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  7. Bowman, C. N. & Kloxin, C. J. Toward an enhanced understanding and implementation of photopolymerization reactions. AIChE J. 54, 2775–2795 (2008).

    Article  CAS  Google Scholar 

  8. DeForest, C. A., Polizzotti, B. D. & Anseth, K. S. Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nature Mater. 8, 659–664 (2009).

    Article  CAS  Google Scholar 

  9. Luo, Y. & Shoichet, M. S. A photolabile hydrogel for guided three-dimensional cell growth and migration. Nature Mater. 3, 249–253 (2004).

    Article  CAS  Google Scholar 

  10. Aizawa, Y., Wylie, R. & Shoichet, M. Endothelial cell guidance in 3D patterned scaffolds. Adv. Mater. 22, 4831–4835 (2010).

    Article  CAS  Google Scholar 

  11. Lee, S. H., Moon, J. J. & West, J. L. Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29, 2962–2968 (2008).

    Article  CAS  Google Scholar 

  12. Hoffmann, J. C. & West, J. L. Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft Matter 6, 5056–5063 (2010).

    Article  CAS  Google Scholar 

  13. Seidlits, S. K., Schmidt, C. E. & Shear, J. B. High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance. Adv. Funct. Mater. 19, 3543–3551 (2009).

    Article  CAS  Google Scholar 

  14. Kloxin, A. M., Kasko, A. M., Salinas, C. N. & Anseth, K. S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  CAS  Google Scholar 

  15. Khetan, S., Katz, J. S. & Burdick, J. A. Sequential crosslinking to control cellular spreading in 3-dimensional hydrogels. Soft Matter 5, 1601–1606 (2009).

    Article  CAS  Google Scholar 

  16. Khetan, S. & Burdick, J. A. Patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31, 8228–8234 (2010).

    Article  CAS  Google Scholar 

  17. Sarig-Nadir, O., Livnat, N., Zajdman, R., Shoham, S. & Seliktar, D. Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743–4752 (2009).

    Article  CAS  Google Scholar 

  18. Ilina, O., Bakker, G. J., Vasaturo, A., Hofmann, R. M. & Friedl, P. Two-photon laser-generated microtracks in 3D collagen lattices: principles of mmp-dependent and -independent collective cancer cell invasion. Phys. Biol. 8, 015010 (2011).

    Article  Google Scholar 

  19. Codelli, J. A., Baskin, J. M., Agard, N. J. & Berozzi, C. R. Second-generation difluorinated cyclooctynes for copper-free click chemistry. J. Am. Chem. Soc. 130, 11486–11493 (2008).

    Article  CAS  Google Scholar 

  20. Adzima, B. J. et al. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction. Nature Chem. 3, 258–261 (2011).

    Article  Google Scholar 

  21. Hoyle, C. E. & Bowman, C. N. Thiol-ene click chemistry. Angew. Chem. Int. Ed. 49, 1540–1573 (2010).

    Article  CAS  Google Scholar 

  22. Dondoni, A. The emergence of thiol-ene coupling as a click process for materials and bioorganic chemistry. Angew. Chem. Int. Ed. 47, 8995–8997 (2008).

    Article  CAS  Google Scholar 

  23. Polizzotti, B. D., Fairbanks, B. D. & Anseth, K. S. Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules 9, 1084–1087 (2008).

    Article  CAS  Google Scholar 

  24. DeForest, C. A., Sims, E. A. & Anseth, K. S. Peptide-functionalized click hydrogels with independently tunable mechanics and chemical functionality for 3D cell culture. Chem. Mater. 22, 4783–4790 (2010).

    Article  CAS  Google Scholar 

  25. Killops, K. L., Campos, L. M. & Hawker, C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene ‘click’ chemistry. J. Am. Chem. Soc. 130, 5062–5064 (2008).

    Article  CAS  Google Scholar 

  26. Fairbanks, B. D. et al. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 21, 5005–5010 (2009).

    Article  CAS  Google Scholar 

  27. Gupta, N. et al. A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nature Chem. 2, 138–145 (2010).

    Article  CAS  Google Scholar 

  28. Uygun, M., Tasdelen, M. A. & Yagci, Y. Influence of type of initiation on thiol-ene ‘click’ chemistry. Macromol. Chem. Phys. 211, 103–110 (2010).

    Article  CAS  Google Scholar 

  29. Alvarez, M. et al. Single-photon and two-photon induced photocleavage for monolayers of an alkyltriethoxysilane with a photoprotected carboxylic ester. Adv. Mater. 20, 4563–4567 (2008).

    Article  CAS  Google Scholar 

  30. Deiters, A. Principles and applications of the photochemical control of cellular processes. ChemBioChem 11, 47–53 (2010).

    Article  CAS  Google Scholar 

  31. Holmes, C. P. Model studies for new o-nitrobenzyl photolabile linkers: substituent effects on the rates of photochemical cleavage. J. Org. Chem. 62, 2370–2380 (1997).

    Article  CAS  Google Scholar 

  32. Ohmuro-Matsuyama, Y. & Tatsu, Y. Photocontrolled cell adhesion on a surface functionalized with a caged arginine-glycine-aspartate peptide. Angew. Chem. Int. Ed. 47, 7527–7529 (2008).

    Article  CAS  Google Scholar 

  33. Johnson, J. A., Baskin, J. M., Bertozzi, C. R., Koberstein, J. T. & Turro, N. J. Copper-free click chemistry for the in situ crosslinking of photodegradable star polymers. Chem. Commun. 3064–3066 (2008).

  34. Wong, D. Y., Griffin, D. R., Reed, J. & Kasko, A. M. Photodegradable hydrogels to generate positive and negative features over multiple length scales. Macromolecules 43, 2824–2831 (2010).

    Article  CAS  Google Scholar 

  35. Kloxin, A. M., Tibbitt, M. W. & Anseth, K. S. Synthesis of photodegradable hydrogels as dynamically tunable cell culture platforms. Nature Protoc. 5, 1867–1887 (2010).

    Article  CAS  Google Scholar 

  36. Kloxin, A. M., Benton, J. A. & Anseth, K. S. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31, 1–8 (2010).

    Article  CAS  Google Scholar 

  37. Frey, M. T. & Wang, Y. L. A photo-modulatable material for probing cellular responses to substrate rigidity. Soft Matter 5, 1918–1924 (2009).

    Article  CAS  Google Scholar 

  38. Redick, S. D., Settles, D. L., Briscoe, G. & Erickson, H. P. Defining fibronectin's cell adhesion synergy site by site-directed mutagenesis. J. Cell Biol. 149, 521–527 (2000).

    Article  CAS  Google Scholar 

  39. Sims, E. A., DeForest, C. A. & Anseth, K. S. A mild, large-scale synthesis of 1,3-cyclooctanedione: expanding access to difluorinated cyclooctyne for copper-free click chemistry. Tetrahedron Lett. 52, 1871–1873 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Kloxin and M. Tibbitt for useful discussions regarding photopatterning, C-C. Lin for advice on cell outgrowth experiments, A. Aimetti and P. Hume for communication on general experimental design, and C. Kloxin for insightful feedback on the written manuscript. Fellowship assistance to C.A.D. was awarded by the US Department of Education's Graduate Assistantships in Areas of National Need. This work was made possible by financial support from the National Science Foundation (DMR 1006711) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

C.A.D. and K.S.A. developed the material concept. C.A.D. and K.S.A. designed the experiments. C.A.D. carried out the experiments. C.A.D. and K.S.A. wrote the manuscript.

Corresponding author

Correspondence to Kristi S. Anseth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeForest, C., Anseth, K. Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nature Chem 3, 925–931 (2011). https://doi.org/10.1038/nchem.1174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing