Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An optoelectronic nose for the detection of toxic gases

Abstract

We have developed a simple colorimetric sensor array that detects a wide range of volatile analytes and then applied it to the detection of toxic gases. The sensor consists of a disposable array of cross-responsive nanoporous pigments with colours that are changed by diverse chemical interactions with analytes. Although no single chemically responsive pigment is specific for any one analyte, the pattern of colour change for the array is a unique molecular fingerprint. Clear differentiation among 19 different toxic industrial chemicals (TICs) within two minutes of exposure at concentrations immediately dangerous to life or health were demonstrated. Based on the colour change of the array, quantification of each analyte was accomplished easily, and excellent detection limits were achieved, generally below the permissible exposure limits. Different TICs were identified readily using a standard chemometric approach (hierarchical clustering analysis), with no misclassifications over 140 trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CSA consists of 36 different chemically responsive pigments printed directly on a polyethylene terephthalate film.
Figure 2: Colour-change profiles of representative TICs at their IDLH concentration after two minutes of exposure.
Figure 3: The effect of concentration on array response to ammonia, chlorine and sulfur dioxide.
Figure 4: Response time of the array.
Figure 5: Reversibility of colorimetric array response.
Figure 6: HCA for 19 TICs at IDLH concentrations and a control.

Similar content being viewed by others

References

  1. Byrnes, M. E., King, D. A. & Tierno, P. M. Jr Nuclear, Chemical, and Biological Terrorism – Emergency Response and Public Protection (CRC Press, 2003).

    Google Scholar 

  2. Suslick, K. S. et al. Seeing smells: development of an optoelectronic nose. Quimica Nova 30, 677–681 (2007).

    Article  CAS  Google Scholar 

  3. Suslick, K. S. An optoelectronic nose: seeing smells by means of colorimetric sensor arrays. MRS Bull. 29, 720–725 (2004).

    Article  CAS  Google Scholar 

  4. Suslick, K. S., Rakow, N. A. & Sen, A. Colorimetric sensor arrays for molecular recognition. Tetrahedron 60, 11133–11138 (2004).

    Article  CAS  Google Scholar 

  5. Rakow, N. A. & Suslick, K. S. A colorimetric sensor array for odour visualization. Nature 406, 710–713 (2000).

    Article  CAS  Google Scholar 

  6. Hawkes, C. H. & Doty, R. L. The Neurology of Olfaction (Cambridge Univ. Press, 2009).

    Book  Google Scholar 

  7. Zarzo, M. The sense of smell: molecular basis of odorant recognition. Biol. Rev. 82, 455–479 (2007).

    Article  Google Scholar 

  8. Wang, J., Luthey-Schulten, Z. A. & Suslick, K. S. Is the olfactory receptor a metalloprotein? Proc. Natl Acad. Sci. USA 100, 3035–3039 (2003).

    Article  CAS  Google Scholar 

  9. Gardner, J. W. & Bartlett, P. N. Electronic Noses: Principles and Applications (Oxford Univ. Press, 1999).

    Google Scholar 

  10. Lewis, N. S. Comparisons between mammalian and artificial olfaction based on arrays of carbon black–polymer composite vapor detectors. Acc. Chem. Res. 37, 663–672 (2004).

    Article  CAS  Google Scholar 

  11. Röck, F., Barsan, N. & Weimar, U. Electronic nose: current status and future trends. Chem. Rev. 108, 705–725 (2008).

    Article  Google Scholar 

  12. Hierlemann, A. & Gutierrez-Osuna, R. Higher-order chemical sensing. Chem. Rev. 108, 563–613 (2008).

    Article  CAS  Google Scholar 

  13. Anslyn, E. V. Supramolecular analytical chemistry. J. Org. Chem. 72, 687–699 (2007).

    Article  CAS  Google Scholar 

  14. Walt, D. R. Electronic noses: wake up and smell the coffee. Anal. Chem. 77, 45A (2005).

    Article  CAS  Google Scholar 

  15. Wolfbeis, O. S. Materials for fluorescence-based optical chemical sensors. J. Mater. Chem. 15, 2657–2669 (2005).

    Article  CAS  Google Scholar 

  16. Hsieh, M.-D. & Zellers, E. T. Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal. Chem. 76, 1885–1895 (2004).

    Article  CAS  Google Scholar 

  17. Janata, J. & Josowicz, M. Conducting polymers in electronic chemical sensors. Nature Mater. 2, 19–24 (2003).

    Article  CAS  Google Scholar 

  18. Grate, J. W. Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100, 2627–2647 (2000).

    Article  CAS  Google Scholar 

  19. Rakow, N. A., Sen, A., Janzen, M. C., Ponder, J. B. & Suslick, K. S. Molecular recognition and discrimination of amines with a colorimetric array. Angew. Chem. Int. Ed. 44, 4528–4532 (2005).

    Article  CAS  Google Scholar 

  20. Janzen, M. C., Ponder, J. B., Bailey, D. P., Ingison, C. K. & Suslick, K. S. Colorimetric sensor arrays for volatile organic compounds. Anal. Chem. 78, 3591–3600 (2006).

    Article  CAS  Google Scholar 

  21. Zhang, C. & Suslick, K. S. A colorimetric sensor array for organics in water. J. Am. Chem. Soc. 127, 11548–11549 (2005).

    Article  CAS  Google Scholar 

  22. Zhang, C., Bailey, D. P. & Suslick, K. S. Colorimetric sensor arrays for the analysis of beers: a feasibility study. J. Agric. Food Chem. 54, 4925–4931 (2006).

    Article  CAS  Google Scholar 

  23. Zhang, C. & Suslick, K. S. Colorimetric sensor array for soft drink analysis. J. Agric. Food Chem. 55, 237–242 (2007).

    Article  CAS  Google Scholar 

  24. Lim, S. H., Musto, C. J., Park, E., Zhong, W. & Suslick, K. S. A colorimetric sensor array for detection and identification of sugars. Org. Lett. 10, 4405–4408 (2008).

    Article  CAS  Google Scholar 

  25. Bang, J. H., Lim, S. H., Park, E. & Suslick, K. S. Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of alipathic amines. Langmuir 24, 13168–13172 (2008).

    Article  CAS  Google Scholar 

  26. Musto, C. J., Lim, S. H. & Suslick, K. S. Colorimetric detection and identification of natural and artificial sweeteners. Anal. Chem. 81, 6526–6533 (2009).

    Article  CAS  Google Scholar 

  27. Podbielsk, H., Ulatowska-Jarza, A., Muller, G. & Eichler, H. J. Optical Chemical Sensors (Springer, 2006).

    Google Scholar 

  28. Dunbar, R. A., Jordan, J. D. & Bright, F. V. Development of chemical sensing platforms based on sol–gel-derived thin films: origin of film age vs. performance trade-offs. Anal. Chem. 68, 604–610 (1996).

    Article  CAS  Google Scholar 

  29. Jeronimo, P. C. A., Araujo, A. N. & Montenegro, M. Optical sensors and biosensors based on sol–gel films. Talanta 72, 13–27 (2007).

    Article  CAS  Google Scholar 

  30. Rottman, C., Grader, G., De Hazan, Y., Melchior, S. & Avnir, D. Surfactant-induced modification of dopants reactivity in sol–gel matrixes. J. Am. Chem. Soc. 121, 8533–8543 (1999).

    Article  CAS  Google Scholar 

  31. Steumpfle, A. K., Howells, D. J., Armour, S. J. & Boulet, C. A. Final Report of International Task Force 25: Hazard From Toxic Industrial Chemicals (US GPO, Washington, DC) http://file.sunshinepress.org:54445/us-uk-ca-mou-itf25-1996.pdf (1996).

    Google Scholar 

  32. Armour, S. J. et al. International Task Force 40: Toxic Industrial Chemicals (TICs)—Operational and Medical Concerns (US GPO, Washington, DC) <http://chppm-www.apgea.army.mil/desp/pages/jeswg/4QFY01/itf-40-2US.ppt> (2001).

  33. Hill, H. H. & Martin, S. J. Conventional analytical methods for chemical warfare agents. Pure Appl. Chem. 74, 2281–2291 (2002).

    Article  CAS  Google Scholar 

  34. Hammond, M. H. et al. A novel chemical detector using cermet sensors and pattern recognition methods for toxic industrial chemicals. Sens. Actuat. B 116, 135–144 (2006).

    Article  CAS  Google Scholar 

  35. Meier, D. C. et al. The potential for and challenges of detecting chemical hazards with temperature-programmed microsensors. Sens. Actuat. B 121, 282–294 (2007).

    Article  CAS  Google Scholar 

  36. Hasswell, S. Practical Guide To Chemometrics (Dekker, 1992).

    Google Scholar 

  37. Scott, S. M., James, D. & Ali, Z. Data analysis for electronic nose systems. Microchim. Acta 156, 183–207 (2007).

    Article  Google Scholar 

  38. Johnson, R. A. & Wichern, D. W. Applied Multivariate Statistical Analysis 6th edn (Prentice Hall, 2007).

    Google Scholar 

  39. Hair, J. F., Black, B., Babin, B., Anderson, R. E. & Tatham, R. L. Multivariate Data Analysis 6th edn (Prentice Hall, 2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported through the National Institutes of Health Genes, Environment and Health Initiative through award U01ES016011.

Author information

Authors and Affiliations

Authors

Contributions

S.H.L. and L.F. contributed equally to the design of experiments, collection and analysis of data, and drafting of the manuscript, with assistance from J.W.K. and C.J.M. K.S.S. originated the central idea, oversaw the design of experiments and data analysis and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Kenneth S. Suslick.

Supplementary information

Supplementary information

Supplementary information (PDF 853 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, S., Feng, L., Kemling, J. et al. An optoelectronic nose for the detection of toxic gases. Nature Chem 1, 562–567 (2009). https://doi.org/10.1038/nchem.360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing