Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a copper-binding metallothionein in pathogenic mycobacteria

Abstract

A screen of a genomic library from Mycobacterium tuberculosis (Mtb) identified a small, unannotated open reading frame (MT0196) that encodes a 4.9-kDa, cysteine-rich protein. Despite extensive nucleotide divergence, the amino acid sequence is highly conserved among mycobacteria that are pathogenic in vertebrate hosts. We synthesized the protein and found that it preferentially binds up to six Cu(I) ions in a solvent-shielded core. Copper, cadmium and compounds that generate nitric oxide or superoxide induced the gene's expression in Mtb up to 1,000-fold above normal expression. The native protein bound copper within Mtb and partially protected Mtb from copper toxicity. We propose that the product of the MT0196 gene be named mycobacterial metallothionein (MymT). To our knowledge, MymT is the first metallothionein of a Gram-positive bacterium with a demonstrated function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of MymT as a polypeptide with MT-like metal-binding motifs.
Figure 2: Mass spectra of MymT complexed with Cu(I) or Zn(II).
Figure 3: MymT binds Cu(I) in a solvent-shielded, luminescent core.
Figure 4: Regulation of mymT transcript abundance.
Figure 5: Generation of a ΔmymT mutant in Mtb.
Figure 6: Sensitivity of the Mtb ΔmymT mutant to cuprous ion.
Figure 7: Generation of Cu(I) by NO.

Similar content being viewed by others

References

  1. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  2. Ehrt, S. et al. A novel antioxidant gene from Mycobacterium tuberculosis. J. Exp. Med. 186, 1885–1896 (1997).

    Article  CAS  Google Scholar 

  3. Ruan, J., St John, G., Ehrt, S., Riley, L. & Nathan, C. noxR3, a novel gene from Mycobacterium tuberculosis, protects Salmonella typhimurium from nitrosative and oxidative stress. Infect. Immun. 67, 3276–3283 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gold, B., Rodriguez, G.M., Marras, S.A., Pentecost, M. & Smith, I. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol. 42, 851–865 (2001).

    Article  CAS  Google Scholar 

  5. Rodriguez, G.M. & Smith, I. Identification of an ABC transporter required for iron acquisition and virulence in Mycobacterium tuberculosis. J. Bacteriol. 188, 424–430 (2006).

    Article  CAS  Google Scholar 

  6. Rodriguez, G.M. & Smith, I. Mechanisms of iron regulation in mycobacteria: role in physiology and virulence. Mol. Microbiol. 47, 1485–1494 (2003).

    Article  CAS  Google Scholar 

  7. Agranoff, D., Monahan, I.M., Mangan, J.A., Butcher, P.D. & Krishna, S. Mycobacterium tuberculosis expresses a novel pH-dependent divalent cation transporter belonging to the Nramp family. J. Exp. Med. 190, 717–724 (1999).

    Article  CAS  Google Scholar 

  8. Wagner, D. et al. Changes of the phagosomal elemental concentrations by Mycobacterium tuberculosis Mramp. Microbiology 151, 323–332 (2005).

    Article  CAS  Google Scholar 

  9. Wagner, D. et al. Elemental analysis of Mycobacterium avium-, Mycobacterium tuberculosis-, and Mycobacterium smegmatis-containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J. Immunol. 174, 1491–1500 (2005).

    Article  CAS  Google Scholar 

  10. Ward, S.K., Hoye, E.A. & Talaat, A.M. The global responses of Mycobacterium tuberculosis to physiological levels of copper. J. Bacteriol. 190, 2939–2946 (2008).

    Article  CAS  Google Scholar 

  11. Liu, T. et al. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat. Chem. Biol. 3, 60–68 (2007).

    Article  CAS  Google Scholar 

  12. Graham, J.E. & Clark-Curtiss, J.E. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA 96, 11554–11559 (1999).

    Article  CAS  Google Scholar 

  13. Wu, C.H. et al. Identification and subcellular localization of a novel Cu,Zn superoxide dismutase of Mycobacterium tuberculosis. FEBS Lett. 439, 192–196 (1998).

    Article  CAS  Google Scholar 

  14. Imlay, J.A. & Linn, S. DNA damage and oxygen radical toxicity. Science 240, 1302–1309 (1988).

    Article  CAS  Google Scholar 

  15. Sato, M. & Bremner, I. Oxygen free radicals and metallothionein. Free Radic. Biol. Med. 14, 325–337 (1993).

    Article  CAS  Google Scholar 

  16. Blindauer, C.A. et al. Multiple bacteria encode metallothioneins and SmtA-like zinc fingers. Mol. Microbiol. 45, 1421–1432 (2002).

    Article  CAS  Google Scholar 

  17. Huckle, J.W., Morby, A.P., Turner, J.S. & Robinson, N.J. Isolation of a prokaryotic metallothionein locus and analysis of transcriptional control by trace metal ions. Mol. Microbiol. 7, 177–187 (1993).

    Article  CAS  Google Scholar 

  18. Turner, J.S. & Robinson, N.J. Cyanobacterial metallothioneins: biochemistry and molecular genetics. J. Ind. Microbiol. 14, 119–125 (1995).

    Article  CAS  Google Scholar 

  19. Bryk, R. et al. Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3, 137–145 (2008).

    Article  CAS  Google Scholar 

  20. Jacob, C., Maret, W. & Vallee, B.L. Ebselen, a selenium-containing redox drug, releases zinc from metallothionein. Biochem. Biophys. Res. Commun. 248, 569–573 (1998).

    Article  CAS  Google Scholar 

  21. Schmidt, F. et al. Complementary analysis of the Mycobacterium tuberculosis proteome by two-dimensional electrophoresis and isotope-coded affinity tag technology. Mol. Cell. Proteomics 3, 24–42 (2004).

    Article  CAS  Google Scholar 

  22. Klaassen, C.D., Choudhuri, S., McKim, J.M. Jr., Lehman-McKeeman, L.D. & Kershaw, W.C. In vitro and in vivo studies on the degradation of metallothionein. Environ. Health Perspect. 102 (suppl. 3): 141–146 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Miles, A.T., Hawksworth, G.M., Beattie, J.H. & Rodilla, V. Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35–70 (2000).

    Article  CAS  Google Scholar 

  24. Beltramini, M. & Lerch, K. Luminescence properties of Neurospora copper metallothionein. FEBS Lett. 127, 201–203 (1981).

    Article  CAS  Google Scholar 

  25. Beltramini, M., Munger, K., Germann, U.A. & Lerch, K. Luminescence emission from the Cu(I)-thiolate complex in metallothioneins. Experientia Suppl. 52, 237–241 (1987).

    Article  CAS  Google Scholar 

  26. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    Article  CAS  Google Scholar 

  27. MacMicking, J.D., Taylor, G.A. & McKinney, J.D. Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302, 654–659 (2003).

    Article  CAS  Google Scholar 

  28. MacMicking, J., Xie, Q.W. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350 (1997).

    Article  CAS  Google Scholar 

  29. MacMicking, J.D. et al. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94, 5243–5248 (1997).

    Article  CAS  Google Scholar 

  30. Manganelli, R., Voskuil, M.I., Schoolnik, G.K. & Smith, I. The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol. Microbiol. 41, 423–437 (2001).

    Article  CAS  Google Scholar 

  31. Stamler, J.S., Lamas, S. & Fang, F.C. Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).

    Article  CAS  Google Scholar 

  32. Blindauer, C.A. et al. A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity. Proc. Natl. Acad. Sci. USA 98, 9593–9598 (2001).

    Article  CAS  Google Scholar 

  33. Turner, J.S., Morby, A.P., Whitton, B.A., Gupta, A. & Robinson, N.J. Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. J. Biol. Chem. 268, 4494–4498 (1993).

    CAS  PubMed  Google Scholar 

  34. Rensing, C. & Grass, G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27, 197–213 (2003).

    Article  CAS  Google Scholar 

  35. Blindauer, C.A., Razi, M.T., Campopiano, D.J. & Sadler, P.J. Histidine ligands in bacterial metallothionein enhance cluster stability. J. Biol. Inorg. Chem. 12, 393–405 (2007).

    Article  CAS  Google Scholar 

  36. Hamer, D.H., Thiele, D.J. & Lemontt, J.E. Function and autoregulation of yeast copperthionein. Science 228, 685–690 (1985).

    Article  CAS  Google Scholar 

  37. Morby, A.P., Turner, J.S., Huckle, J.W. & Robinson, N.J. SmtB is a metal-dependent repressor of the cyanobacterial metallothionein gene smtA: identification of a Zn inhibited DNA-protein complex. Nucleic Acids Res. 21, 921–925 (1993).

    Article  CAS  Google Scholar 

  38. Robinson, N.J., Whitehall, S.K. & Cavet, J.S. Microbial metallothioneins. Adv. Microb. Physiol. 44, 183–213 (2001).

    Article  CAS  Google Scholar 

  39. Turner, J.S., Robinson, N.J. & Gupta, A. Construction of Zn2+/Cd(2+)-tolerant cyanobacteria with a modified metallothionein divergon: further analysis of the function and regulation of smt. J. Ind. Microbiol. 14, 259–264 (1995).

    Article  CAS  Google Scholar 

  40. Hassett, R. & Kosman, D.J. Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 270, 128–134 (1995).

    Article  CAS  Google Scholar 

  41. Georgatsou, E., Mavrogiannis, L.A., Fragiadakis, G.S. & Alexandraki, D. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J. Biol. Chem. 272, 13786–13792 (1997).

    Article  CAS  Google Scholar 

  42. Schapiro, J.M., Libby, S.J. & Fang, F.C. Inhibition of bacterial DNA replication by zinc mobilization during nitrosative stress. Proc. Natl. Acad. Sci. USA 100, 8496–8501 (2003).

    Article  CAS  Google Scholar 

  43. Binet, M.R., Cruz-Ramos, H., Laver, J., Hughes, M.N. & Poole, R.K. Nitric oxide releases intracellular zinc from prokaryotic metallothionein in Escherichia coli. FEMS Microbiol. Lett. 213, 121–126 (2002).

    Article  CAS  Google Scholar 

  44. Arthur, J.W. & Wilkins, M.R. Using proteomics to mine genome sequences. J. Proteome Res. 3, 393–402 (2004).

    Article  CAS  Google Scholar 

  45. Jungblut, P.R., Muller, E.C., Mattow, J. & Kaufmann, S.H. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect. Immun. 69, 5905–5907 (2001).

    Article  CAS  Google Scholar 

  46. Pandey, D.P. & Gerdes, K. Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res. 33, 966–976 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Domaille and C. Chang (University of California, Berkeley); H. Erdjument-Bromage and P. Tempst (Protein Center, Sloan-Kettering Institute); P. Wille, A. Morrishow and S. Gross (Weill Medical College); T. Kapoor and J. Cherian (Rockefeller University); and M. Gurney, J. Singh and R. Samy (deCODE Chemistry) for help with experiments not included here. We thank J. Cox (University of California, San Francisco) and V. Rao and M. Glickman (Sloan Kettering Institute) for phages; N. Chandramouli (Rockefeller University) for synthesis of MymT; S. Ehrt, A. Ding and K. Rhee for critical review of the manuscript; and N. Brot, S. Marras, S. Walters, M. Monteleone and members of the labs of C. Nathan, S. Ehrt and A. Ding for advice. We thank the anonymous reviewers for important guidance. This work was supported by US National Institutes of Health grant AI 62559. The Department of Microbiology and Immunology of Weill Cornell Medical College is supported by the William Randolph Hearst Foundation.

Author information

Authors and Affiliations

Authors

Contributions

B.G. initiated the study, designed and performed experiments, analyzed data and co-wrote the manuscript. H.D. designed, performed and analyzed ESI-MS studies and supervised synthesis of MymT. R.B. and D.E. helped design experiments and analyze data. D.V. designed and performed qRT-PCR experiments and analyzed data. J.R. and X.J. performed experiments. C.N. helped design experiments, analyze data and write the manuscript.

Corresponding author

Correspondence to Carl Nathan.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 1843 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gold, B., Deng, H., Bryk, R. et al. Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4, 609–616 (2008). https://doi.org/10.1038/nchembio.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing