Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding

Abstract

Inositol pyrophosphates (such as IP7 and IP8) are multifunctional signaling molecules that regulate diverse cellular activities. Inositol pyrophosphates have 'high-energy' phosphoanhydride bonds, so their enzymatic synthesis requires that a substantial energy barrier to the transition state be overcome. Additionally, inositol pyrophosphate kinases can show stringent ligand specificity, despite the need to accommodate the steric bulk and intense electronegativity of nature's most concentrated three-dimensional array of phosphate groups. Here we examine how these catalytic challenges are met by describing the structure and reaction cycle of an inositol pyrophosphate kinase at the atomic level. We obtained crystal structures of the kinase domain of human PPIP5K2 complexed with nucleotide cofactors and either substrates, product or a MgF3 transition-state mimic. We describe the enzyme's conformational dynamics, its unprecedented topological presentation of nucleotide and inositol phosphate, and the charge balance that facilitates partly associative in-line phosphoryl transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of hPPIP5K2KD, a member of the ATP–grasp fold superfamily.
Figure 2: Comparison of substrate binding pockets for hPPIP5K2KD and ITPK1.
Figure 3: Structural and mutagenic analysis of residues in hPPIP5K2KD that participate in substrate binding.
Figure 4: Snapshots of the reaction mechanism.
Figure 5: The relative topologies of nucleotide and substrate in inositol phosphate kinases.
Figure 6: A conserved catalytic blueprint in hPPIP5K2KD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Streb, H., Irvine, R.F., Berridge, M.J. & Schulz, I. Release of Ca2+ from a nonmitochondrial store in pancreatic cells by inositol-1,4,5-trisphosphate. Nature 306, 67–69 (1983).

    Article  CAS  Google Scholar 

  2. Monserrate, J.P. & York, J.D. Inositol phosphate synthesis and the nuclear processes they affect. Curr. Opin. Cell Biol. 22, 365–373 (2010).

    Article  CAS  Google Scholar 

  3. Stephens, L. et al. The detection, purification, structural characterization and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J. Biol. Chem. 268, 4009–4015 (1993).

    CAS  PubMed  Google Scholar 

  4. Menniti, F.S., Miller, R.N., Putney, J.W. Jr. & Shears, S.B. Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268, 3850–3856 (1993).

    CAS  PubMed  Google Scholar 

  5. Barker, C.J., Illies, C., Gaboardi, G.C. & Berggren, P.O. Inositol pyrophosphates: structure, enzymology and function. Cell. Mol. Life Sci. 66, 3851–3871 (2009).

    Article  CAS  Google Scholar 

  6. Burton, A., Hu, X. & Saiardi, A. Are inositol pyrophosphates signalling molecules? J. Cell. Physiol. 220, 8–15 (2009).

    Article  CAS  Google Scholar 

  7. Shears, S.B. Diphosphoinositol polyphosphates: metabolic messengers? Mol. Pharmacol. 76, 236–252 (2009).

    Article  CAS  Google Scholar 

  8. Prasad, A. et al. Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling. Nat. Immunol. 12, 752–760 (2011).

    Article  CAS  Google Scholar 

  9. Chakraborty, A. et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143, 897–910 (2010).

    Article  CAS  Google Scholar 

  10. Lee, Y.S., Huang, K., Quiocho, F.A. & O'Shea, E.K. Molecular basis of cyclin-CDK-CKI regulation by reversible binding of an inositol pyrophosphate. Nat. Chem. Biol. 4, 25–32 (2008).

    Article  CAS  Google Scholar 

  11. Saiardi, A. et al. Inositol pyrophosphate: physiologic phosphorylation of proteins. Science 306, 2101–2105 (2004).

    Article  CAS  Google Scholar 

  12. Hand, C.E. & Honek, J.F. Phosphate transfer from inositol pyrophosphates InsP5PP and InsP4(PP)2: a semi-empirical investigation. Bioorg. Med. Chem. Lett. 17, 183–188 (2007).

    Article  CAS  Google Scholar 

  13. Choi, J.H., Williams, J., Cho, J., Falck, J.R. & Shears, S.B. Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J. Biol. Chem. 282, 30763–30775 (2007).

    Article  CAS  Google Scholar 

  14. Gokhale, N.A., Zaremba, A. & Shears, S.B. Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem. J. 434, 415–426 (2011).

    Article  CAS  Google Scholar 

  15. Saiardi, A., Nagata, E., Luo, H.R., Snowman, A.M. & Snyder, S.H. Identification and characterization of a novel inositol hexakisphosphate kinase. J. Biol. Chem. 276, 39179–39185 (2001).

    Article  CAS  Google Scholar 

  16. Fridy, P.C., Otto, J.C., Dollins, D.E. & York, J.D. Cloning and characterization of two human VIP1-like inositol hexakisphosphate and diphosphoinositol pentakisphosphate kinases. J. Biol. Chem. 282, 30754–30762 (2007).

    Article  CAS  Google Scholar 

  17. Saiardi, A., Erdjument-Bromage, H., Snowman, A., Tempst, P. & Snyder, S.H. Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr. Biol. 9, 1323–1326 (1999).

    Article  CAS  Google Scholar 

  18. Mulugu, S. et al. A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316, 106–109 (2007).

    Article  CAS  Google Scholar 

  19. Lin, H. et al. Structural analysis and detection of biological inositol pyrophosphates reveals that the VIP/PPIP5K family are 1/3-kinases. J. Biol. Chem. 284, 1863–1872 (2009).

    Article  CAS  Google Scholar 

  20. Draškovič, P. et al. Inositol hexakisphosphate kinase products contain diphosphate and triphosphate groups. Chem. Biol. 15, 274–286 (2008).

    Article  Google Scholar 

  21. Holm, L. & Rosenstrom, P. Dali server: conservation mapping in 3D. Nucleic Acids Res. 38, W545–W549 (2010).

    Article  CAS  Google Scholar 

  22. Lee, D., Redfern, O. & Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995–1005 (2007).

    Article  CAS  Google Scholar 

  23. Miller, G.J., Wilson, M.P., Majerus, P.W. & Hurley, J.H. Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-trisphosphate 5/6-kinase. Mol. Cell 18, 201–212 (2005).

    Article  CAS  Google Scholar 

  24. Chamberlain, P.P. et al. Integration of inositol phosphate signaling pathways via human ITPK1. J. Biol. Chem. 282, 28117–28125 (2007).

    Article  CAS  Google Scholar 

  25. Shears, S.B. How versatile are inositol phosphate kinases? Biochem. J. 377, 265–280 (2004).

    Article  CAS  Google Scholar 

  26. Holmes, W. & Jogl, G. Crystal structure of inositol phosphate multikinase 2 and implications for substrate specificity. J. Biol. Chem. 281, 38109–38116 (2006).

    Article  CAS  Google Scholar 

  27. Herschlag, D. The role of induced fit and conformational changes in specificity and catalysis. Bioorg. Chem. 16, 62–96 (1988).

    Article  CAS  Google Scholar 

  28. Graham, D.L. et al. MgF3 as a transition state analog of phosphoryl transfer. Chem. Biol. 9, 375–381 (2002).

    Article  CAS  Google Scholar 

  29. Mildvan, A.S. Mechanisms of signaling and related enzymes. Proteins 29, 401–416 (1997).

    Article  CAS  Google Scholar 

  30. Cannon, W.R., Singleton, S.F. & Benkovic, S.J. A perspective on biological catalysis. Nat. Struct. Biol. 3, 821–833 (1996).

    Article  CAS  Google Scholar 

  31. Miller, G.J. & Hurley, J.H. Crystal structure of the catalytic core of inositol 1,4,5-trisphosphate 3-kinase. Mol. Cell 15, 703–711 (2004).

    Article  CAS  Google Scholar 

  32. Gonzalez, B. et al. Structure of a human inositol 1,4,5-trisphosphate 3-kinase; substrate binding reveals why it is not a phosphoinositide 3-kinase. Mol. Cell 15, 689–701 (2004).

    Article  CAS  Google Scholar 

  33. González, B., Banos-Sanz, J.I., Villate, M., Brearley, C.A. & Sanz-Aparicio, J. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition. Proc. Natl. Acad. Sci. USA 107, 9608–9613 (2010).

    Article  Google Scholar 

  34. Madhusudan, Xuong, N.H. & Taylor, S.S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 9, 273–277 (2002).

    Article  CAS  Google Scholar 

  35. Reddy, K.M., Reddy, K.K. & Falck, J.R. Synthesis of 2- and 5-diphospho-myo-inositol pentakisphosphate (2- and 5-PP-InsP5). Tetrahedron Lett. 38, 4951–4952 (1997).

    Article  CAS  Google Scholar 

  36. Albert, C. et al. Biological variability in the structures of diphosphoinositol polyphosphates in Dictyostelium discoideum and mammalian cells. Biochem. J. 327, 553–560 (1997).

    Article  CAS  Google Scholar 

  37. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  38. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  39. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  40. Winn, M.D., Murshudov, G.N. & Papiz, M.Z. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Data were collected at the Southeast Regional Collaborative Access Team 22-ID/22-BM beamline at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at http://www.ser-cat.org/members.html. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38. This work was supported by the Intramural Research Program of the National Institutes of Health and National Institute of Environmental Health Sciences (NIEHS). We are grateful to L.C. Pedersen for advice and support. We also thank H. Ke for his assistance in writing the manuscript. Expression vectors were prepared by the NIEHS Protein Expression Core Facility.

Author information

Authors and Affiliations

Authors

Contributions

H.W., T.M.T.H. and S.B.S. designed experiments and wrote the manuscript. H.W. and S.B.S. performed the experiments. J.R.F. synthesized substrate for hPPIP5K2.

Corresponding author

Correspondence to Huanchen Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Results (PDF 3747 kb)

Supplementary Movie 1

Wang_SuppMovie1.mov (MOV 5167 kb)

Supplementary Movie 2

Wang_SuppMovie2.mov (MOV 3991 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Falck, J., Hall, T. et al. Structural basis for an inositol pyrophosphate kinase surmounting phosphate crowding. Nat Chem Biol 8, 111–116 (2012). https://doi.org/10.1038/nchembio.733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.733

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing